Calculating Integral    
   f(x) = e**(-x) * log(x+1);
    uu = integral(f, (x, 0, oo));
    uu.n(digits=18)
why this dont work?
As far as I can tell, this seems to be a bug. uu evaluates to the expression e*expintegral_e(1, 1) and the expintegral_e function doesn't seem to be defined. There is a exponential_integral_1 function which seems to give the correct answer:
sage: N(e*exponential_integral_1(1), digits=18)
0.596347362323194107
This agrees with WolframAlpha.
Yup, @benjaminfjones is right on track.
sage: sage.symbolic.pynac.symbol_table['maxima']
{'elliptic_e': elliptic_e, 'imagpart': imag_part, 'acsch': arccsch, 'glaisher': glaisher, 'asinh': arcsinh,
'minf': -Infinity, 'elliptic_f': elliptic_f, '(1+sqrt(5))/2': golden_ratio, 'inf': +Infinity, 'log(2)': log2,
 'kron_delta': kronecker_delta, 'asin': arcsin, 'log': log, 'atanh': arctanh, 'brun': brun, '%pi': pi,    
'acosh': arccosh, 'sin': sin, 'mertens': mertens, 'ceiling': ceil, 'infinity': Infinity, 'elliptic_ec': 
elliptic_ec, 'atan': arctan, 'factorial': factorial, 'twinprime': twinprime, 'khinchin': khinchin, 
'catalan': catalan, 'signum': sgn, 'binomial': binomial, 'delta': dirac_delta, 'asec': arcsec, 
'elliptic_kc': elliptic_kc, '%gamma': euler_gamma, 'realpart': real_part, 'elliptic_eu': elliptic_eu, 
'cos': cos, 'acoth': arccoth, 'gamma_incomplete': gamma, 'li[2]': dilog, 'atan2': arctan2, 'exp': exp, 
'psi[0]': psi, 'asech': arcsech, 'acos': arccos, 'acot': arccot, 'acsc': arccsc, 'elliptic_pi': elliptic_pi}
We seem to be missing quite a few of the functions at The Maxima special function listing. Fixing this is Ticket #11143.
Asked: 2011-04-06 18:49:23 +0100
Seen: 1,275 times
Last updated: Apr 06 '11
 Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.
 
                
                Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.