Ask Your Question
0

Question on tensor products (of the free algebra)

asked 2024-06-21 11:56:41 +0100

c.p. gravatar image

updated 2024-06-21 17:40:14 +0100

If $F$ is the free algebra over the rational numbers with generators ${a,b,c,\ldots}$, then $F\otimes F$ is implemented

F<a,b,c>=FreeAlgebra(QQ)
Fsquare=F.tensor_square()

Typical element are (sums of)

F(a) # F(1)
F(a) # F(b^2)
(1/2)*F(1) # F(a* b*a* c^2)

A first issue I have is that -- despite the typing alternative e.g. a.tensor(b) for a#b -- output happens in the hashtag format, which, if copied, is recognised only as a comment after that sign. Is there a way to make output useful [or rendered as tensor(a,b)] ?

And more importantly, how read off each factor of this type of expressions? That is, how to map

(1/2)*F(1) # F(a* b*a* c^2)

to, say,

(1/2)  ,   a*b*a*c^2

or

 1,  a*b*a*c^2 /2

(who gets the numerical factor I don't care) ?

edit retag flag offensive close merge delete

1 Answer

Sort by ยป oldest newest most voted
1

answered 2024-06-21 17:34:08 +0100

dan_fulea gravatar image

An element of the $F\otimes F=$Fsquare is a sum of coefficients times $\otimes$-monomials. It has an iterator that can be used to isolate the pieces. For instance:

F.<a,b,c> = FreeAlgebra(QQ)
Fsquare = F.tensor_square()

E = (a + b).tensor((c + 1/2)^2)
for term in E:
    print(term)

This gives:

((a, c^2), 1)
((b, c^2), 1)
((a, c), 1)
((b, c), 1)
((a, 1), 1/4)
((b, 1), 1/4)

Alternatively:

for (s, t), coeff in E:
    print(f"Term    {s} (x) {t}   with coefficient {coeff}")

which gives:

Term    a (x) c^2   with coefficient 1
Term    b (x) c^2   with coefficient 1
Term    a (x) c   with coefficient 1
Term    b (x) c   with coefficient 1
Term    a (x) 1   with coefficient 1/4
Term    b (x) 1   with coefficient 1/4

Note also that latex(E) gives a good expression to be used in a latex environment:

\frac{1}{4} F_{a} \otimes F_{1} + F_{a} \otimes F_{c} + F_{a} \otimes F_{c^{2}} + \frac{1}{4} F_{b} \otimes F_{1} + F_{b} \otimes F_{c} + F_{b} \otimes F_{c^{2}}

$$ \frac{1}{4} F_{a} \otimes F_{1} + F_{a} \otimes F_{c} + F_{a} \otimes F_{c^{2}} + \frac{1}{4} F_{b} \otimes F_{1} + F_{b} \otimes F_{c} + F_{b} \otimes F_{c^{2}} $$

edit flag offensive delete link more

Comments

sure I forgot to specify $F\otimes F$ has non-homogeneous elements, was a little bit sloppy of me. Thanks

c.p. gravatar imagec.p. ( 2024-06-21 17:43:08 +0100 )edit

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 2024-06-21 11:56:41 +0100

Seen: 123 times

Last updated: Jun 21