# need ur help [closed]

prove that rank(A?B)?rank(A)?rank(B) where A and B are n*n matrices

need ur help [closed]

prove that rank(A?B)?rank(A)?rank(B) where A and B are n*n matrices

close date 2013-10-05 15:50:52

Asked: **
2013-10-05 03:35:23 -0500
**

Seen: **35 times**

Last updated: **Oct 05 '13**

general linear group finite field

How are list of matrices printed by sage?

elementary matrices for elementary row operations

all final(optimal) values of for loop

canonicalize_radical for matrices.

Matrices not equal, but entries are. Why?

What is wrong with the conditional statement if?

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.

Again, Sage cannot *prove* such things. You can of course do `A = matrix([0]); B = matrix([1]); rank(A)*rank(B) == rank(A*B)` to get `True` but that is not a proof.