Ask Your Question
0

One more time : two problems of substitution

asked 2023-05-31 12:39:02 +0100

Cyrille gravatar image

updated 2023-05-31 13:57:02 +0100

Max Alekseyev gravatar image

As there is no module about calculus of variations (or optimal control), I try to write the Euler equation from scratch

t, T, K_0, K_T, r=var('t T K_0 K_T r')
assume(r>0)
assume(K_0>0)
assume(K_T>0)
U=function('U')
Y=function('Y')
K=function('K')
K_t=function('K_t')
F=function('F')(t)
F(t)=e^(-r*t)*U(H(t))
F_t=function('F_t')
U_t=function("U'")(x)
F_t= diff(F,t)
H=function('H')
H(t) = r*K(t)-K_t(t)+Y(t)
show(LatexExpr(r'F(t) = '),F(t))
show(LatexExpr(r'\dot{F}(t) = '),F_t(t))

which gives

image description

Here I encounter two difficulties :

1) I want substitute to $D_0(U)$ the standard notation for univariate derivative (that is $U^\prime()$). But, dispite all the good advices which are in the answer to my question https://ask.sagemath.org/question/782... I cannot obtain any result.

2) I would like to substitute later to the unformall $U(x)$ the function $x^a$ (or any other admissible functon like $U(x) = \log(x)$). Also I must declare a function fo $Y(t)$.This time also I cannot obtain what I am searching for.

I am sincerely sorry to be so uneffective in fiding some solutions.

edit retag flag offensive close merge delete

1 Answer

Sort by ยป oldest newest most voted
0

answered 2023-06-01 14:36:59 +0100

Emmanuel Charpentier gravatar image

updated 2023-06-01 21:51:10 +0100

First : as given, your code does not run, some functions being used before definition. Please do your homework and check your sample code after reset()ting before posting.

Your problem is that the operator of a derivative expression is not recognized as a function by substitute_function. After running :

t, T, K_0, K_T, r=var('t T K_0 K_T r')
assume(r>0)
assume(K_0>0)
assume(K_T>0)
U=function('U')
Y=function('Y')
K=function('K')
K_t=function('K_t')
# H=function('H') # Superfluous, ,since H is defined immediately below
H(t) = r*K(t)-K_t(t)+Y(t) # H must be defined fefore being used in F(t)
# F=function('F')(t) # Superfluous, ,since F is defined immediately below
F(t)=e^(-r*t)*U(H(t))
# F_t=function('F_t') # Superfluous, since f_t is defined two lines below.
# U_t=function("U'")(x)
U_t=function("U'")
F_t= diff(F,t)

We can ask :

view(LatexExpr("F(t)=%s"%latex(F(t))))

which displays : $$ \dot{F}(t)=U\left(r K\left(t\right) - K_{t}\left(t\right) + Y\left(t\right)\right) e^{\left(-r t\right)} $$

The expression to be reexpressed is

sage: foo=F_t(t).maxima_methods().part(1,1) ; foo
D[0](U)(r*K(t) - K_t(t) + Y(t))

(This site's Mathjax isn't able to typeset this, bur LeTeX can).

Whose operator (= function) is

sage: foo.operator()
D[0](U)

We should be able to write :

     F_t().substitute_function(F_t(t).maxima_methods().part(1,1).operator(), U_t)

But this does not work, this operator being not recognized as a function :

sage: F_t().substitute_function(F_t(t).maxima_methods().part(1,1).operator(), U_t)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In [256], line 1
----> 1 F_t().substitute_function(F_t(t).maxima_methods().part(Integer(1),Integer(1)).operator(), U_t)

File /usr/local/sage-10/src/sage/symbolic/expression.pyx:6063, in sage.symbolic.expression.Expression.substitute_function()
   6061 else:
   6062     for a in args:
-> 6063         _dict_update_check_duplicate(sdict, _subs_fun_make_dict(a))
   6064 
   6065 if kwds:

File /usr/local/sage-10/src/sage/symbolic/expression.pyx:724, in sage.symbolic.expression._subs_fun_make_dict()
    722 else:
    723     msg = "not able to determine a substitution from {}"
--> 724     raise TypeError(msg.format(s))
    725 
    726 

TypeError: not able to determine a substitution from D[0](U)

The key is that :

sage: foo.operator() in SR
False

Complain fiercely. Or file a well-documented issue...

The workaround is to replace the whole subexpression foo in the expression you want to reformat, which gives :

view(LatexExpr(r"\dot{F}(t)=%s"%latex(F_t(t).subs({foo:U_t(*foo.operands())}))))

$$ \dot{F}(t)=-r U\left(r K\left(t\right) - K_{t}\left(t\right) + Y\left(t\right)\right) e^{\left(-r t\right)} + {\left(r \frac{\partial}{\partial t}K\left(t\right) - \frac{\partial}{\partial t}K_{t}\left(t\right) + \frac{\partial}{\partial t}Y\left(t\right)\right)} {\rm U'}\left(r K\left(t\right) - K_{t}\left(t\right) + Y\left(t\right)\right) e^{\left(-r t\right)} $$

For your second qyuuestion the substitution has no role, because you can substitute U before differentiating ; no further derivative ioerators in sight :

sage: F(t).substitute_function(U, (x^a).function(x)).diff(t)
(r*diff(K(t), t) - diff(K_t(t), t) + diff(Y(t), t))*(r*K(t) - K_t(t) + Y(t))^(a - 1)*a*e^(-r*t) - (r*K(t) - K_t(t) + Y(t))^a*r*e^(-r*t)

$$ -r e^{\left(-r t\right)} \log\left(r K\left(t\right) - K_{t}\left(t\right) + Y\left(t\right)\right) + \frac{{\left(r \frac{\partial}{\partial t}K\left(t\right) - \frac{\partial}{\partial t}K_{t}\left(t\right) + \frac{\partial}{\partial t}Y\left(t\right)\right)} e^{\left(-r t\right)}}{r K\left(t\right) - K_{t}\left(t\right) + Y\left(t\right)} $$

sage: a=SR.var("a")
sage: F(t).substitute_function(U, (x^a).function(x)).diff(t)
(r*diff(K(t), t) - diff(K_t(t), t) + diff(Y(t), t))*(r*K(t) - K_t(t) + Y(t))^(a - 1)*a*e^(-r*t) - (r*K(t) - K_t(t) + Y(t))^a*r*e^(-r*t)

$$ {\left(r \frac{\partial}{\partial t}K\left(t\right) - \frac{\partial}{\partial t}K_{t}\left(t\right) + \frac{\partial}{\partial t}Y\left(t\right)\right)} {\left(r K\left(t\right) - K_{t}\left(t\right) + Y\left(t\right)\right)}^{a - 1} a e^{\left(-r t\right)} - {\left(r K\left(t\right) - K_{t}\left(t\right) + Y\left(t\right)\right)}^{a} r e^{\left(-r t\right)} $$

HTH,

edit flag offensive delete link more

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 2023-05-31 12:39:02 +0100

Seen: 207 times

Last updated: Jun 01 '23