Prove polynomial ring isomorphism
How can i prove the following ring isomorphism in Sage?
RX−a =R/(X−a) =Z[X]/⟨Xn+1⟩/(X−a)≅Z/(an+1)
Would I use an evaluation homomorphism?
RX−a = Z[X]/(X−a,Xn+1) = Z[X]/(X−a,an+1) ≅ Z/(an+1)Z
Start with much simpler concrete example
Z2/Z[X]/(X4+1) ≅ Z/2Z
Z_2 = IntegerModRing(2)
P.<x> = PolynomialRing(Z_2)
I = P.ideal(x^4+1)
R = P.quotient(I)
a = R.an_element()
(a+1)^4 == a^4+1 # True
Hom(R,Z_2)