Ask Your Question
0

Access to all the coefficients of an expression seems to fail

asked 2023-05-15 10:31:44 +0100

Cyrille gravatar image

updated 2023-05-20 14:42:16 +0100

slelievre gravatar image

For at least 3 days, I have been fighting with SageMath to construct this code which works nicely.

def use_prime(expr):
    """
    Return the expression with one-variable function derivatives in prime notation.
    """
    op = expr.operator()
    if op:
        args = expr.operands()
        aargs = (use_prime(a) for a in args)
        opp = op
        if (isinstance(op, sage.symbolic.operators.FDerivativeOperator)
                and len(args) == 1):
            name = op.function().name()
            primes = "’" * len(op.parameter_set())
            opp = function(f"{name}{primes}")
        return opp(*aargs)
    else:
        return expr

### 1

var('x y p w_0 θ I')
assume(p >= 0)
assume(p <= 1)
assume(θ >= 1)
U = function('U')  # déclare U comme le nom d'une fonction
EU(x, y, p) = p * U(x) + (1 - p) * U(y)
w_1 = function('w_1')
w_1(w_0, π) = (w_0 - π)
w_2 = function('w_2')
w_2(w_0, π, x, I, p) = (w_0 - π) - x + I 
π = function('π')
π(p, I, θ)=θ*(1-p)*I
U = function('U')
EU(x, y, p) = p * U(x) + (1 - p) * U(y)
x, y, p, w_0, θ, I, = SR.var('x y p w_0 θ I')
f = EU(w_1(w_0, π(p,I,θ)),w_2(w_0, π, x, I, π(p, I, θ)) )
h = diff(f, I)
hh = use_prime(h)
k = diff(f, I, 2)
kk = use_prime(k)
show(LatexExpr(r'''\text{L’assuré cherche à résoudre le programme suivant :} '''))
show(LatexExpr(r'''I^\star = \textrm{argmax}_{\{I\}}\left\{pU(w_1)+(1-p) U(w_2)| w_1'''
               r'''=w_0 - \pi, w_2 = w_0 - \pi -x + I, \pi = \theta(1-p)I \right\} '''))
show(LatexExpr(r'''\text{ou encore : } I^\star = \textrm{argmax}_{\{I\}}\{'''),
     f, LatexExpr(r'\}'))     
show(LatexExpr(r'''\text{La condition d’optimalité du premier ordre est } '''
               r'''d\mathbb{E}U = 0 \text{, soit : } '''))
show(LatexExpr(r'\,\,\,\,\,\,\,\,\,\,\,\,\,\, d\mathbb{E}U = '),hh, ' = 0')
d2EU = diff(EU(w_1(w_0, π), w_2(w_0, π, x, I, p), p), I, 2)
show(LatexExpr(r'''\text{La condition d’optimalité du second ordre est } '''
               r'''d\mathbb{E}U = 0 \text{, soit : } '''))
show(LatexExpr(r'\,\,\,\,\,\,\,\,\,\,\,\,\,\,'), kk, ' < 0')

### 2

show(LatexExpr(r'\text{Commençons par vérifier si la condition '
               r'du second ordre est vérifiée}'))
show(LatexExpr(r'\text{On va réécrire à la main la condition du second ordre '
               r'de manière à obtenir une équation algébrique '
               r'en substituant une variable positive}'))
show(LatexExpr(r'U2 > 0. \text{ Pour ce faire, il faut réussir à isoler } '
               r'U^{\prime\prime}.'))
var('A')
U1 = hh.expand().coefficient(θ).coefficient(p).subs(2 == A).coefficient(A)
U2 = hh.coefficient(θ).coefficient(p)
show(U1)
show(U2)
eqn = (U1/U2 == (p - 1) * p * θ / ((p - 1) * θ + 1) * (p - 1))
eqn1 = ((U1/U2) == (p - 1) * p * θ / ((p - 1) * θ + 1) * (p - 1))
show(eqn1)

subs(2==A) is not self evident since replacing a constant by another one doesn't a priori come to mind naturally. I have been forced to take some detours since I cannot ask what is he coefficient of say $(p-1)^2*\theta$. My question is why.

Secondly, I would like to know if there is a more automatic way to arrive at the eqn equation. That is, if there is a solution to transform an equation eqn = (A-B==0) in a second one eqn1 = (A==B) (of course if A and B where only parameters or variables I could do it with solve(A==B, A) but I use A and B to save typing.

Thirdly, I would like to substitute x to I and 1 to \theta and look what is the result. But nothing I have tried works. Thanks for your help.

edit retag flag offensive close merge delete

1 Answer

Sort by » oldest newest most voted
0

answered 2023-05-15 11:43:22 +0100

Emmanuel Charpentier gravatar image

Look SR's documentation of expression conversions, especially here...

edit flag offensive delete link more

Comments

I have changed the way I asked my question since I have made some advance in it's resolution.

Cyrille gravatar imageCyrille ( 2023-05-16 12:51:06 +0100 )edit

I add a second modification. But either I am completely stupid or I need somebody to explain why it si so complex to obtain what I desire

Cyrille gravatar imageCyrille ( 2023-05-17 20:22:43 +0100 )edit

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 2023-05-15 10:31:44 +0100

Seen: 349 times

Last updated: May 20 '23