First time here? Check out the FAQ!

Ask Your Question
0

I try to calculate by using discrete_log() but not work for large number

asked 2 years ago

nym gravatar image

updated 1 year ago

Max Alekseyev gravatar image

.

t = discrete_log(4606815884838096377785347111721334332459567989754605435844553924611757427069, Mod(97016818800896472150918065086250305521582061568558917554562390770912719895221401642022327235442504255165455324230541561317542276008106728590510249294231213455088465804512445976666355341857163701366354017006156391714683091049337810349792952918394597561886848000536740995848307859909170152759863496892968987231467561357586221114673227133800245184712226234621456455055786160754075383416875161259574092211341255393749410533119623826022492550461865106935976459567575039483207880962220201808514572855267625449697560220455487500630057056345784705084220984258795128046351522036351167622945734117491830725821551997905856388097998709013799516296255410153025209661687012871382956250022352094543531376473023885009728693916552500738520889410618602032797484750688036815302369359485137135837765742210512442884404829684504513832855643449269497374643683169162268135642045354863586480102333829311525506559975842373513467258443822413596446917980763567520633434489460617319283227852373961939739720136100557229670703791162232608762953316138358641479844379559693650788986725716764183578522801765063225561679015968963874983645936232418844248759448460194794538908830428864623572575789445910870181422652249016571805995234565152065996757057264254174752086868, 617287018455808291809828381396728963438857532378086039582820659484693730680947319796389162560181325828755367322358924996072362055728046389598377834786382499819306983727314365829500259441483724649894796950127083467301377449510548513672290843754754474460477662564925191307272949211058626328330247905804435852861329727486878773160349827133784125602394857849063882526701153670843055473328830310659567683441082359295315475586695277481351571095664526128816504457558257099130271728396770126116948315823045789371730353271064228914634692223191287980316988286311277750868008798756519257847111393116479360711451979857453986868779040788147597049302241908696918207549776441493966195761452548133627398129120915303060891043270738763497525203978356873746577724506651876903792787903505978860347514314292847949386040101538796396558125948956283327893607513279162068698706742054767580230117259873012637253491799995851913560728342384154299618295839126759347347445931235544984475302728937968731291599076267890615751236298580678807361199230603797947385207709017115833960761739849998574057771149558246830629882968096301142307316762881619766992186858655805011590896707769035113658409993817187963475011969965698065891474311987832706316925420095004577127665239))
t
Preview: (hide)

2 Answers

Sort by » oldest newest most voted
0

answered 1 year ago

Sylvain gravatar image

The current record for prime number modulus discrete logarithm is about 795 bits using about 3100 core-years. You are trying to solve a discrete logarithm with a number which is 4096 bit long. Even though this is not a prime number its seems to have large prime numbers in its factors thus it won't finish on your machine. For smaller examples of the discret_log usage see previous questions.

Preview: (hide)
link
0

answered 1 year ago

Max Alekseyev gravatar image

updated 1 year ago

No surprise here since it's a hard computational problem. I suggest to start with factoring the modulus (which can also be computationally hard), which will allow to split computing the original discrete logarithm into those modulo smaller prime powers (factors of the modulus), which is typically simpler.

Preview: (hide)
link

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

Stats

Asked: 2 years ago

Seen: 340 times

Last updated: Apr 26 '23