Rational quadratic form from invariants
I'm trying to restore rational quadratic form from invariants using quadratic_form_from_invariants
function. But why this code doesn't work? I'm taking rational quadratic form invariants and trying to restore it back.
Or am I doing something wrong?
Q = DiagonalQuadraticForm(QQ, [1, -1, -1])
P = [p for p in [-1] + list(prime_range(1000)) if Q.hasse_invariant(p) == -1]
params = Q.dim(), Q.Gram_det(), P, Q.signature_vector()[1]
print(params)
print(quadratic_form_from_invariants(QQ, *params))
It gets results
(3, 1, [-1, 2], 2)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Input In [1], in <cell line: 7>()
4 params = Q.dim(), Q.Gram_det(), P, Q.signature_vector()[Integer(1)]
5 print(params)
----> 7 print(quadratic_form_from_invariants(QQ, *params))
File /home/sc_serv/sage/src/sage/quadratic_forms/quadratic_form.py:154, in quadratic_form_from_invariants(F, rk, det, P, sminus)
152 f = 1
153 if (f + len(P)) % 2 == 1:
--> 154 raise ValueError("invariants do not define a rational quadratic form")
155 D = []
156 while rk >= 2:
ValueError: invariants do not define a rational quadratic form
Thanks!
P is a list of primes, so why [-1] is in your code? It seems that without this [-1] your code works
You may try
P = [p for p in 2*[-1] + list(prime_range(1000)) if Q.hasse_invariant(p) == -1]
to avoid thatraise
- the implementer had something different in mind and wantedP
to be a list of primes...