# How can I calculate limit(cos(x+I*y),y=infinity) ?

How can I calculate limit(cos(x+I*y),y=infinity) ?

edit retag close merge delete

Sort by ยป oldest newest most voted

To show that the limit is complex infinity it is sufficient to show that the modulus goes to infinity

y=var('y',domain='real')
limit(cos(x+I*y).abs(),y=+oo,algorithm='sympy')
+Infinity


Note that |cos(x+I*y)|^2=cos^2(x)+sinh^2(y).

more

FWIW :

sage:  x, y = var("x, y")
sage: table([[u, cos(x+I*y).limit(y=oo, algorithm=u)] for u in ["maxima", "sympy", "giac", "fricas", "mathematica_free"]])
maxima             limit(cos(x + I*y), y, +Infinity)
sympy              +Infinity
giac               bounded_function(6)
fricas             failed
mathematica_free   ComplexInfinity


Curiously, these results do not depend on assumptions on the domain :

sage: with assuming(x, y, "real"): table([[u, cos(x+I*y).limit(y=oo, algorithm=u)] for u in ["maxima", "sympy", "giac", "fricas", "mathematica_free"]])
maxima             limit(cos(x + I*y), y, +Infinity)
sympy              +Infinity
giac               bounded_function(8)
fricas             failed
mathematica_free   ComplexInfinity


My (rusty) memories of analysis make me think yjat Matheatica's answer is the closest to reality...

BTW :

sage: foo = cos(x+I*y).exponentialize().factor() ; foo
1/2*(e^(2*I*x) + e^(2*y))*e^(-I*x - y)
sage: table([[u, foo.limit(y=oo)] for u in ["maxima", "giac", "fricas", "mathematica_free"]])
maxima             Infinity
giac               Infinity
fricas             Infinity
mathematica_free   Infinity
sage: with assuming(x, y, "real"): table([[u, foo.limit(y=oo)] for u in ["maxima", "giac", "fricas", "mathematica_free"]])
maxima             Infinity
giac               Infinity
fricas             Infinity
mathematica_free   Infinity


(Sympy fails to compute this limit...).

EDIT : FWIW, in the gratis Wolfram Engine used from emacs's wolfram-mode :

In[17]:= Limit[Abs[Factor[TrigToExp[Cos[x+I*y]]]], y->Infinity]

Out[17]= Infinity

In[18]:= Limit[Arg[Factor[TrigToExp[Cos[x+I*y]]]], y->Infinity]

-I Re[x]
Out[18]= -I Log[E        ]

In[19]:= Assuming[Element[x, Reals] && Element[y, Reals], Limit[Abs[Factor[TrigToExp[Cos[x+I*y]]]], y->Infinity]]

Out[19]= Infinity

In[20]:= Assuming[Element[x, Reals] && Element[y, Reals], Limit[Arg[Factor[TrigToExp[Cos[x+I*y]]]], y->Infinity]]

Out[20]= -ArcTan[Tan[x]]


HTH,

more

Please start posting anonymously - your entry will be published after you log in or create a new account.

## Stats

Asked: 2022-12-26 12:17:32 +0100

Seen: 246 times

Last updated: Dec 26 '22