Ask Your Question
0

complex limits

asked 2022-12-03 00:58:04 +0200

b@nnon.us gravatar image

Given that $z$ is a complex number of the form $z = a +b i$, where $a, \, b \in \mathbb{R}$, and $\overline{z}$ is its conjugate, what is $$\lim_{z \to 0} \frac{\left( \overline{z} \right)^2}{ z^2} =\text{?}$$

When I ask Sage to do this limit, it says it's 1. I am almost certain that's not right. Here's the Sage code:

`sage: z=var('z')

sage: assume(z,'complex')

sage: limit((conjugate(z))^2/z^2,z=0) `

My analysis leads to DNE, so I wonder if I am misusing Sage.

edit retag flag offensive close merge delete

1 Answer

Sort by ยป oldest newest most voted
0

answered 2022-12-03 08:44:24 +0200

achrzesz gravatar image

updated 2022-12-03 10:40:54 +0200

The limit is equivalent to two limits of functions of two real variables

x,y=var('x y',domain=RR)
z=x+I*y
f=(z.conjugate()/z)^2
f,  f.rectform()
((x - I*y)^2/(x + I*y)^2,
-4*I*(x^2 - y^2)*x*y/(x^2 + y^2)^2 - (4*x^2*y^2 - (x^2 - y^2)^2)/(x^2 + y^2)^2)

It does not exist, since the limits on some subsets are different

limit(f.subs(y=0),x=0),  limit(f.subs(x=y),y=0)
(1, -1)

Use

plot3d(real_part(f),(x,-1,1),(y,-1,1))
plot3d(imag_part(f),(x,-1,1),(y,-1,1))

for better understanding

Using another approach, if a is the modulus and b the argument, then

a,b=var('a b',domain=RR)
z=a*exp(I*b)
f=(z.conjugate()/z)^2;f

e^(-4*I*b)

and the limit

limit(f,a=0)
e^(-4*I*b)

depends on the argument , so the limit with z->0 does not exist

edit flag offensive delete link more

Comments

Thank you! A link to your answer will be shared with my pre-calculus students. YouTube video link: https://youtu.be/9OlsUum8d0g

b@nnon.us gravatar imageb@nnon.us ( 2022-12-03 11:33:13 +0200 )edit

Another way to see it is to search the directional limit of f :

sage: var("rho, theta", domain="real")
(rho, theta)
sage: f=rho*(cos(theta)+I*sin(theta))
sage: (f.conjugate()^2/f^2).limit(rho=0)._sympy_().simplify().rewrite("sin")._sage_()
cos(4*theta) - I*sin(4*theta)

which show that this limit depends of the direction of your trajectory to 0...

BTW :

sage: (f.conjugate()^2/f^2)._sympy_().simplify().rewrite("sin")._sage_()
cos(4*theta) - I*sin(4*theta)

which does not depend on rho...

Emmanuel Charpentier gravatar imageEmmanuel Charpentier ( 2022-12-03 13:26:59 +0200 )edit

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

Stats

Asked: 2022-12-03 00:58:04 +0200

Seen: 195 times

Last updated: Dec 03 '22