First time here? Check out the FAQ!

Ask Your Question
1

Polynomial is in ideal of a coordinate ring

asked 2 years ago

narodnik gravatar image

I am getting an error with the code below. Please advise how I can do this. Thanks

sage: K.<x> = QQ[]
sage: _.<y> = K[]
sage: K.<y> = K.extension(y^2 - x^3 - x)
sage: I = Ideal(x, y)
sage: I
Ideal (x, y) of Univariate Quotient Polynomial Ring in y over Univariate Polynomial Ring in x over Rational Field with modulus y^2 - x^3 - x
sage: x - y^2 + x^3 in I
...
NotImplementedError:
Preview: (hide)

1 Answer

Sort by » oldest newest most voted
1

answered 2 years ago

narodnik gravatar image

This works:

sage: K.<x, y> = QQ[]
sage: I = Ideal(y^2 - x^3 - x)
sage: L.<X, Y> = K.quotient(I)
sage: I = Ideal(X, Y)
sage: I
Ideal (X, Y) of Quotient of Multivariate Polynomial Ring in x, y over Rational Field by the ideal (-x^3 + y^2 - x)
sage: X - Y^2 + X^3 in I
True
Preview: (hide)
link

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 2 years ago

Seen: 150 times

Last updated: Aug 25 '22