First time here? Check out the FAQ!

Ask Your Question
0

permutations and transpositions

asked 3 years ago

tunekamae gravatar image

updated 3 years ago

tmonteil gravatar image

How a permutation be converted to a product of transpositions. inversions() gives an incorrect anser.

P=Permutation([4, 8, 3, 1, 9, 2, 6, 7, 5]); P.inversions()
[(1, 3),(1, 4),(1, 6),(2, 3),(2, 4),(2, 6),(2, 7),(2, 8),(2, 9),(3, 4),(3, 6),(5, 6),(5, 7),(5, 8),(5, 9),(7, 9),(8, 9)]

I expect

[(1,3),(1,4),(2,3),(2,4),(2,6),(2,7),(2,8),(3,6),(5,9)]
Preview: (hide)

Comments

2 Answers

Sort by » oldest newest most voted
0

answered 3 years ago

Max Alekseyev gravatar image

This can be done via reduced words:

P = Permutation([4, 8, 3, 1, 9, 2, 6, 7, 5])
r = P.reduced_word()
q = [(i,i+1) for i in r]
assert prod(Permutation(str(i)) for i in q[::-1]) == P
print(q)
Preview: (hide)
link

Comments

Note that this decomposition is pretty long:

sage: q
[(3, 4),
 (2, 3),
 (1, 2),
 (7, 8),
 (6, 7),
 (5, 6),
 (4, 5),
 (3, 4),
 (2, 3),
 (4, 5),
 (3, 4),
 (8, 9),
 (7, 8),
 (6, 7),
 (5, 6),
 (7, 8),
 (8, 9)]
sage: len(q)
17
tmonteil gravatar imagetmonteil ( 3 years ago )

Yes, since it uses adjacent transpositions.

Max Alekseyev gravatar imageMax Alekseyev ( 3 years ago )
0

answered 3 years ago

tmonteil gravatar image

updated 3 years ago

First, note that the image of 1 is 4, the image of 6 is 2:

sage: P(1)
4
sage: P(6)
2
sage: P(6) < P(1)
True

Hence, (1,6) should be part of the inversions (an inversion is a pair (i,j) such that i<j and P(i)>P(j)).

Now, if you want to decompose a permutations into transpositions, note that there are many ways, none of them is canonical. However, you can decompose your permutation into disjoint cycles and then each cycle can be decomposed into transpositions.

sage: C = P.cycle_tuples() ; C
[(1, 4), (2, 8, 7, 6), (3,), (5, 9)]

From such a decomposition, you can easily get a decomposition of the permutation into tuples (because (a1,a2,a3,...,an) = (a1,a2)(a1,a3)...(a1,an)) :

sage: L = []
....: for c in C:
....:     if len(C) >= 2:
....:         a = c[0]
....:         for b in c[1:]:
....:             L.append((a,b))

sage: L
[(1, 4), (2, 8), (2, 7), (2, 6), (5, 9)]

You can check:

sage: prod(Permutation(t) for t in L)
[4, 8, 3, 1, 9, 2, 6, 7, 5]

sage: prod(Permutation(t) for t in L) == P
True
Preview: (hide)
link

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 3 years ago

Seen: 529 times

Last updated: Apr 15 '22