Tree representing an expression
Is there a way to see the tree representing an expression in Sage? Just like Mathematica does with:
TreeForm[Sqrt[x^2+y^2+z^2] + x/y]]
Is there a way to see the tree representing an expression in Sage? Just like Mathematica does with:
TreeForm[Sqrt[x^2+y^2+z^2] + x/y]]
Sage does not provide a built-in function for that.
However, such a function is given in the answer to this Sage question:
Refreshing the code from that answer for Python 3:
class ExpressionGraph():
def __init__(self, expr):
self.G = Graph()
self.i = 0
self.expr = expr
self.root = None
self.graph_expr(self.expr)
def plot(self, *args, **kwds):
# print "root is {0}".format(self.root)
return self.G.plot(*args, layout='tree', tree_root=self.root, **kwds)
def graph_expr(self, expr):
try:
operator = expr.operator()
except AttributeError: # e.g. if expr is an integer
operator = None
if operator is None:
name = "[{0}] {1}".format(self.i, expr)
# print(self.i)
# print("(leaf) {0}".format(expr))
self.i += 1
self.G.add_vertex(name)
return name
else:
name = "[{0}] {1}".format(self.i, expr.operator().__name__)
# print(self.i)
# print("(node) {0}; {1}".format(expr, expr.operator().__name__))
if self.i == 0:
self.root = name
# print(" ** root is '{0}' **".format(self.root))
self.i += 1
new_nodes = []
for opnd in expr.operands():
new_nodes += [self.graph_expr(opnd)]
self.G.add_vertex(name)
self.G.add_edges([(name, node) for node in new_nodes])
return name
Using it:
sage: x, y, z = SR.var('x, y, z')
sage: f = sqrt(x^2+y^2+z^2) + x/y
sage: E = ExpressionGraph(f)
sage: E.plot()
Please start posting anonymously - your entry will be published after you log in or create a new account.
Asked: 2021-07-29 05:06:43 +0100
Seen: 272 times
Last updated: Jul 30 '21
Traversing sage's symbolic expression trees in python
Getting a rooted graph from a nested list of lists
How to use E.T.E. a Python tree package within Sage?
Distinct (nonisomorphic) trees
How to draw special trees from a list consisting of tuples with Sage?
Edges associated to the variables in G.kirchhoff_symanzik_polynomial()