# Set-Intersection Iteration

Suppose I have two sets with integral elements $A$ = {$a_1, a_2, ... , a_n$} and $B$ = {$b_1, b_2, ... , b_m$}, the cardinalities of which are arbitrarily large, and $a_n > a_{n - 1} > a_{n - 2} > ... > a_1$ and $b_m > b_{m - 1} > b_{m - 2} > ... > b_1$ with $n$ ≠ $m$. Suppose, also, that the intersection of sets $A$ and $B$ is the singleton set {$c$}, and there exists an index $i$ such that $b_{i + 1} > a_n > b_i > b_{i - 1} > ... > b_1$ where $a_n = \sup(A)$.

I want to create a for-loop iteration (or whatever the best approach might be!) that finds the set intersection without generating all the elements of both sets and then determining the set {$c$}. (This is possible because the generating functions I've created yield explicit formulas I can use to calculate specific elements of both sets.)

I wrote some basic code in Sage to calculate elementary set intersection, but for even moderately large cardinalities, the halt time was incredibly long. I'm thinking the following approach might be faster, but I don't know how to write the program using for-/while-loops and if/else constructions (or even if I should do so):

(1) Check if $a_{n - 1}$ ≤ $b_i$. If $a_{n - 1} > b_i$, keep checking conterminous decreasing indices for elements of $A$ (i.e., $a_{n - 2}$, $a_{n - 3}$, etc.) until $a_j$ ≤ $b_i$ for some index $j < n - 1$. If $a_j = b_i$, break and print($a_j$). If not, go to step (2).

(2) When $a_j < b_i$, check conterminous decreasing indices for elements of $B$ (i.e., $b_{i - 1}$, $b_{i - 2}$, etc.) until $a_j$ ≥ $b_k$ for some index $k < i$. If $a_j = b_k$, break and print($b_k$). If not, go to step (3).

(3) Repeat the process in steps (1) and (2) until $a_r = b_s$ for some indices $r$ ≠ $s$; then, break and print($b_s$).

Thanks in advance.

Yes, you could do that using "iterators" that produce elements in increasing order one by one.

Great. Could you point me to a site/book that will show me how to write this kind of iterative code? The tutorials I've read only show basic for- or while-loop constructions with one or two nested if-then conditions.

In the question you write:

Please provide the code you wrote so far and we can help build from that.

To display blocks of code or error messages in Ask Sage, skip a line above and below, and do one of the following (all give the same result):

For instance, typing

produces:

Please edit your question to add your code formatted in that way.

Here's the code. The most basic set intersection based on my research/reading:

For arbitrarily large $n$, this is too expensive from a time-complexity standpoint.