Find elements of left coset ZZ_6/{0,3}
If I have a group G = (ZZ_6,+), i.e. the integers modulo 6 under addition, and a subgroup of G, H = ({0,3}, +), how can I find G/H with sage?
If I have a group G = (ZZ_6,+), i.e. the integers modulo 6 under addition, and a subgroup of G, H = ({0,3}, +), how can I find G/H with sage?
Note that the sage instances corresponding to the ring $(\Bbb Z/6,+,\cdot)$, and to the cyclic abelian group $(C_6,+)$ differ, as it also happens in the mathematical world. The quotient in the category of rings is built w.r.t. an ideal, in our case the ideal is generated by $3\in \Bbb Z/6$. In the category of abelian groups we mod out a subgroup, in our case the subgroup is generated by $3$. Let us construct the quotient in both cases.
In the category of rings, we introduce the ring $R$ by either of...
sage: Integers(6)
Ring of integers modulo 6
sage: Zmod(6)
Ring of integers modulo 6
sage: IntegerModRing(6)
Ring of integers modulo 6
then consider its ideal $J=(3)$, and the quotient:
sage: R = Zmod(6)
sage: R
Ring of integers modulo 6
sage: J = R.ideal(3)
sage: J
Principal ideal (3) of Ring of integers modulo 6
sage: list(R)
[0, 1, 2, 3, 4, 5]
sage: Q = R.quotient(J)
sage: Q
Ring of integers modulo 3
sage: for k in R:
....: print(f"{k} modulo J is {Q(k)}")
....:
0 modulo J is 0
1 modulo J is 1
2 modulo J is 2
3 modulo J is 0
4 modulo J is 1
5 modulo J is 2
sage:
In the category of abelian groups (and/or in the category of groups) one can construct:
sage: C6.<a> = AbelianGroup(1, [6])
sage: C6
Multiplicative Abelian group isomorphic to C6
sage: # or
sage: C6 = CyclicPermutationGroup(6)
sage: a = C6.gens()[0]
sage: a.order()
6
sage: a
(1,2,3,4,5,6)
And the quotient is...
sage: H = C6.subgroup([a^3])
sage: Q = C6.quotient(H)
sage: Q
Permutation Group with generators [(1,2,3)]
Unfortunately, the version using C6.<a> = AbelianGroup(1, [6])
was leading to a sage crash on my machine while trying to build the quotient with respect to the subgroup H
constructed mot-a-mot as above. So just use the construction involving a permutation group.
Asked: 2020-06-19 00:28:22 -0600
Seen: 51 times
Last updated: Jun 29 '20
How to iterate over groups in increasing size
Group given by congruence relation
Cosets Generated by Product of Generators
Faster function for working with cosets
Is there any way to find decomposition group and ramification groups
How do I identify the set of words of given length in matrix generators