There are several options that may be useful when working with large matrices.
According to this answer, you can make the output cells as wide as your browser window like this:
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))
The way matrices render depends on Sage's display mode setting. You can use latex rendering which shows the matrix without wrapping, possibly with scroll bars:
%display None # this is the default setting
show(matrix.random(RDF, 3, 6))
$\left(\begin{array}{rrrrrr}
-0.5335729217418883 & 0.33189831716910057 & -0.8771148747225102 & -0.14167703358089478 & -0.03476729579811866 & -0.7426696594404245 \\
-0.5264988250426905 & -0.9613263978046536 & 0.5193318671027474 & 0.50502299085177 & 0.9965496912371574 & -0.2443527360324771 \\
-0.87630629977601 & -0.4145065008844313 & 0.11082126955236471 & 0.36141568208211927 & -0.5794258198253386 & 0.5378936808115167
\end{array}\right)$
Alternatively, to use latex rendering for everything:
%display latex
matrix.random(RDF, 3, 6)
In the terminal, you can view the latex rendered output in an external PDF viewer:
view(matrix.random(RDF, 3, 6))
As of Sage 9.1, another option is to use ascii_art
or unicode_art
for the display.
sage: %display unicode_art
sage: matrix.random(RDF, 3, 6)
⎛ 0.7857496475272576 -0.5621432349663726 -0.6197864217688647
⎜-0.09602225319381907 0.6310818306433721 0.04663485890726049
⎝ 0.364267304071475 0.8731639828344335 -0.22804442057132857
0.2696959663485283 0.4186525964528831 -0.8423186241521643⎞
-0.49765470886120133 0.4748930267502407 0.4784913888617619⎟
0.6678112962808911 -0.7422772589338069 0.5578165726172355⎠
In the terminal, the above makes use of the full width of the terminal window. In the notebook, it defaults to 80 columns - you can set a higher column number like this:
sage: %display unicode_art 100
sage: matrix.random(RDF, 3, 6)
⎛ 0.41816693194292154 0.26120840306318804 -0.837348560208534 -0.45806384657796806
⎜ 0.7240198735200238 -0.3906634900294397 -0.4104572268754003 0.987926730666215
⎝-0.16185556154081815 -0.03065482370398409 -0.3616997572776217 -0.8037967794680001
0.841751537119509 -0.9660050207134228⎞
0.8075498876793383 -0.7844231138398663⎟
0.8499554630711053 0.18744229144965852⎠
Can you provide a minimal example? For instance a matrix with one row and the least number of columns to illustrate the issue.