intersection of two free submodules
I have two modules found as follows
F=GF(2);R.<x,y,z> = PolynomialRing(F)
f1 = 1+z;g1=1+y;h1=0;
I1 = Ideal([f1,g1,h1])
M1 = I1.syzygy_module(); M1
[ 0 0 1]
[y + 1 z + 1 0]
F=GF(2);R.<x,y,z> = PolynomialRing(F)
f2 = 0;g2=1+y;h2=1+x;
I2 = Ideal([f2,g2,h2])
M2 = I2.syzygy_module(); M2
[ 1 0 0]
[ 0 x + 1 y + 1]
Is it possible to find the intersection of two such submodules M1 and M2 in sage? Another possibility would be to find the syzygy of the module generated by vectors (f1,g1,h1) and (f2,g2,h2).