Ask Your Question
1

How to better plot elliptic curves over finite fields?

asked 2020-01-22 00:26:08 +0100

JGC gravatar image

updated 2020-01-22 00:26:28 +0100

I'm trying to get an elliptic curve plot, but the points are too thick and the resolution too low. This makes the points stick together in a mess. The following code

E = EllipticCurve(GF(next_prime(20000)),[0,1])
E.plot()

results in this image(https:// imgur.com/a/aMFpFXN). How can i make the points less thick/the resolution bigger?

edit retag flag offensive close merge delete

Comments

1

From E.plot?:

  • "args, *kwds" - all other options are passed to the circle graphing primitive.

So did you try circle? and circle.options?

Emmanuel Charpentier gravatar imageEmmanuel Charpentier ( 2020-01-22 06:23:57 +0100 )edit

2 Answers

Sort by ยป oldest newest most voted
2

answered 2020-01-24 19:45:40 +0100

zahllos gravatar image

I don't think it will be instructive, for learning purposes, to use a prime that big and plot it (assuming this is what you want to do) and I suspect the problem is the size of the field.

Here's the curve I use as an example, with cofactor 1, for "ecc" curves that are like NIST ones.

  E=EllipticCurve(GF(17),[3,5])
  E.order()
  E.is_supersingular()
  E.plot()

As you can see, it's a prime order group (so cofactor 1) and not supersingular, although it is obviously way too small for real world use. The plot however is nicer. Can't upload it to show you, but you can reproduce from this.

edit flag offensive delete link more
0

answered 2020-01-31 12:23:23 +0100

dan_fulea gravatar image

Let us understand first the called plot routine, asking for "help" and "full help". Using

E = EllipticCurve(GF(next_prime(20000)),[0,1])
E.plot?

we obtain also the information where the code is located:

Init docstring: Initialize self.  See help(type(self)) for accurate signature.
File:           /usr/lib/python3.8/site-packages/sage/schemes/elliptic_curves/ell_finite_field.py
Type:           method

Usually, E.plot?? would be enough to get the way the method works,

Source:   
    def plot(self, *args, **kwds):
        """
        !!! ... long doc string ... !!! PLEASE CHECK IT
        """
        R = self.base_ring()
        if not R.is_prime_field():
            raise NotImplementedError

        G = plot.Graphics()
        G += plot.points([P[0:2] for P in self.points() if not P.is_zero()], *args, **kwds)

        return G
File:      /usr/lib/python3.8/site-packages/sage/schemes/elliptic_curves/ell_finite_field.py

but in this case we need more, since the plot in the line G = plot.Graphics() is not the global plot, but the one in the lines...

import sage.plot.all as plot

class EllipticCurve_finite_field(EllipticCurve_field, HyperellipticCurve_finite_field):

at the beginning of the file. OK, we know the origin of the plot method, can also ask for its documentation:

sage: import sage.plot.all as xplot                                                                                                  
sage: ?xplot.points

and the last points method sends us to point2d, where we finally get the meaning of the options we can use, for instance

sage: xplot.point2d?

also contains examples using size and pointsize. Defaults are

sage: xplot.point2d.options                                                                                                          
{'alpha': 1,
 'aspect_ratio': 'automatic',
 'faceted': False,
 'legend_color': None,
 'legend_label': None,
 'marker': 'o',
 'markeredgecolor': None,
 'rgbcolor': (0, 0, 1),
 'size': 10}

So in order to get smaller points, one can try:

sage: E.plot(pointsize=1)

and note that the option pointsize=1 is passed to the plot through the line in the code of E.plot:

Source:   
    def plot(self, *args, **kwds):
        """etc
        """
        R = self.base_ring()
        if not R.is_prime_field():
            raise NotImplementedError

        G = plot.Graphics()
        G += plot.points([P[0:2] for P in self.points() if not P.is_zero()], *args, **kwds)

        return G

in the line with G += ... where we get the *args, **kwds from the E.plot caller, and insert them to the plot.points. To have access to the size of the graphics, we need to have access to G, so it is maybe a good idea to construct the G object with bare hands and use its G.show method with the right / needed figsize. See the example in xplot.Graphics?

edit flag offensive delete link more

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 2020-01-22 00:26:08 +0100

Seen: 1,221 times

Last updated: Jan 31 '20