Ask Your Question
1

Error computing curvature of graph submanifold

asked 2019-09-08 06:15:18 +0100

Paul Bryan gravatar image

updated 2023-01-09 23:59:52 +0100

tmonteil gravatar image

The following appears to be a bug in sagemanifolds curvature. I see the error running it in cocalc.com. Other things like computing the induced_metric() and normal() and fine. Am I doing something wrong?

sage: P = Manifold(3, 'P', structure='Riemannian', metric_name='g', start_index=0)
sage: Q = Manifold(2, 'Q', ambient=P, structure='Riemannian', metric_name='k', start_index=1)

sage: CP.<x,y,z> = P.chart()
sage: CQ.<u,v> = Q.chart()

sage: g = P.metric()
sage: c = 2/(sum(y^2 for y in CP[1:]) + 1)
sage: g[0,0], g[1,1], g[2,2] = 1, c^2, c^2

sage: f = sum(CQ[:])
sage: f = u + v
sage: phi = Q.diff_map(P,{(CQ, CP):[f] + list(CQ[:])})
sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CQ[:])})

sage: Q.set_embedding(phi, inverse=phi_inv)

sage: K = Q.extrinsic_curvature()

Error in lines 13-13

Traceback (most recent call last):

File "/cocalc/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 1188, in execute flags=compile_flags), namespace, locals)

File "", line 1, in <module>

File "/ext/sage/sage-8.8_1804/local/lib/python2.7/site-packages/sage/manifolds/differentiable/pseudo_riemannian_submanifold.py", line 1067, in second_fundamental_form range(self._dim + 1))

File "sage/matrix/matrix0.pyx", line 1424, in sage.matrix.matrix0.Matrix.__setitem__ (build/cythonized/sage/matrix/matrix0.c:8796) self.set_unsafe(row, col, self._coerce_element(value))

File "sage/matrix/matrix0.pyx", line 1529, in sage.matrix.matrix0.Matrix._coerce_element (build/cythonized/sage/matrix/matrix0.c:10273) return self._base_ring(x)

File "sage/structure/parent.pyx", line 900, in sage.structure.parent.Parent.__call__ (build/cythonized/sage/structure/parent.c:9197) return mor._call_(x)

File "sage/structure/coerce_maps.pyx", line 288, in sage.structure.coerce_maps.NamedConvertMap._call_ (build/cythonized/sage/structure/coerce_maps.c:5942) cdef Element e = method(C)

File "sage/symbolic/expression.pyx", line 1087, in sage.symbolic.expression.Expression._integer_ (build/cythonized/sage/symbolic/expression.cpp:8689) raise TypeError("unable to convert %r to an integer" % self)

TypeError: unable to convert 1/2sqrt(2)(u^4 + v^4 + 2(u^2 + 1)v^2 + 2u^2 + 1)y/(sqrt(u^4 + v^4 + 2(u^2 + 1)v^2 + 2u^2 + 3)(y^2 + z^2 + 1)) + 1/2sqrt(2)(u^4 + v^4 + 2(u^2 + 1)v^2 + 2u^2 + 1)z/(sqrt(u^4 + v^4 + 2(u^2 + 1)v^2 + 2u^2 + 3)(y^2 + z^2 + 1)) to an integer

edit retag flag offensive close merge delete

1 Answer

Sort by ยป oldest newest most voted
2

answered 2019-09-08 15:49:42 +0100

eric_g gravatar image

updated 2019-09-14 16:33:11 +0100

Thanks for reporting this issue. This is a bug, which is now fixed in the ticket #28462. Hopefully, this ticket will be merged in Sage 8.9 (to come out soon).

With #28462, your code leads to

sage: K = Q.extrinsic_curvature()
sage: K.display_comp()
K_uu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2)) 
K_uv = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2)) 
K_vu = -4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u + v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2)) 
K_vv = 4*sqrt(u^4 + v^4 + 2*(u^2 + 1)*v^2 + 2*u^2 + 3)*(u - v)/(sqrt(2)*u^6 + sqrt(2)*v^6 + 3*(sqrt(2)*u^2 + sqrt(2))*v^4 + 3*sqrt(2)*u^4 + (3*sqrt(2)*u^4 + 6*sqrt(2)*u^2 + 5*sqrt(2))*v^2 + 5*sqrt(2)*u^2 + 3*sqrt(2))

Side note: your declaration of phi_inv is not correct: with your code, we have

sage: phi_inv.display()
P --> Q
   (x, y, z) |--> (u, v) = (u, v)

As you can see, the output is ill-formed, because (u, v) should be a function of (x, y, z).

The correct declaration should be

sage: phi_inv = P.diff_map(Q, {(CP, CQ) : list(CP[1:])})

which leads to

sage: phi_inv.display()
P --> Q
   (x, y, z) |--> (u, v) = (y, z)

Forturnately, phi_inv plays no role in the computation of the extrinsic curvature.

EDIT (14 Sep. 2019): the fix introduced in #28462 has been merged in Sage 8.9.rc0, so the next stable release of Sage will be free from this bug.

edit flag offensive delete link more

Comments

Awesome! Thanks for pointing out the error in my code too.

Paul Bryan gravatar imagePaul Bryan ( 2019-09-08 23:51:37 +0100 )edit

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 2019-09-08 06:15:18 +0100

Seen: 256 times

Last updated: Sep 14 '19