Working with sums/products of lists [closed]

asked 2019-01-05 15:20:32 +0100

galio gravatar image

I need to work symbolically with expressions such as this

$L(x; a,b) = \prod_{i=1}^n{abx_i^{a-1}(1-x_i^a)^{b-1}}$

where $x$ would be a random sample of size $n$.

I don't know of any way to express the indexing of the sample $x$ by each element...

The closest I got was defining the variables $n$ and $i$ and representing $x$ as a function

var('a','b','x','n','i')
assume(x>0,a>0,b>0,i>0,n>0)
X = function('X',nargs=1)
L = product(a*b*X(i)^(a-1)*(1-X(i)^a)^(b-1), i, 1, n)

But this seems to inmediately assume that $X(i) = i$ and $L$ is represented as:

$-\frac{\left(-1\right)^{n} a^{n} b^{n} X\left(0\right) X\left(-1\right) X\left(-2\right) X\left(-3\right) X\left(-4\right) X\left(-5\right) X\left(-6\right) X\left(-7\right) X\left(-8\right) X\left(-9\right) {\prod_{i=1}^{n} {\left(-X\left(i\right)^{a} + 1\right)}^{b}} {\prod_{i=1}^{n} X\left(i\right)^{a}}}{X\left(n - 1\right) X\left(n - 2\right) X\left(n - 3\right) X\left(n - 4\right) X\left(n - 5\right) X\left(n - 6\right) X\left(n - 7\right) X\left(n - 8\right) X\left(n - 9\right) X\left(n\right) {\prod_{i=1}^{n} X\left(i\right)^{a} - 1} {\prod_{i=1}^{n} X\left(i - 10\right)}}$

I don't know how to deal with this expression, and it seems to me like it should be straight forward.

edit retag flag offensive reopen merge delete

Closed for the following reason duplicate question by tmonteil
close date 2019-01-06 13:36:49.485077