Ask Your Question
2

How to realize the composition of rational function mappings with Sagemath?

asked 2018-10-25 05:03:33 +0100

xiwang0213 gravatar image

If I have two rational function mappings : f(x,y): (x,y )------>( x^2+15x-2 / x+15, x^2y+xy+y / x^2+30x-1 ); g(x,y): (x,y )------>( x^2+20x-18 / x+20, x^2y+xy+32y / x^2-31x+14 );

how to compute the f(g(x,y)) with sagemath?

edit retag flag offensive close merge delete

2 Answers

Sort by ยป oldest newest most voted
2

answered 2018-10-25 09:52:22 +0100

eric_g gravatar image

In addition to @slelievre 's answer, a possibility is to consider f and g as functions on the Euclidean plane:

sage: E.<x,y> = EuclideanSpace()
sage: f = E.diff_map(E, [(x^2+15*x-2) / (x+15), (x^2*y+x*y+y) / (x^2+30*x-1)])
sage: f.display()
E^2 --> E^2
   (x, y) |--> ((x^2 + 15*x - 2)/(x + 15), (x^2*y + x*y + y)/(x^2 + 30*x - 1))
sage: g = E.diff_map(E, [(x^2+20*x-18) / (x+20), (x^2*y+x*y+32*y) / (x^2-31*x+14)])
sage: g.display()
E^2 --> E^2
   (x, y) |--> ((x^2 + 20*x - 18)/(x + 20), (x^2*y + x*y + 32*y)/(x^2 - 31*x + 14))

Then you may compose f and g via the * operator:

sage: h = f * g
sage: h.display()
E^2 --> E^2
   (x, y) |--> ((x^4 + 55*x^3 + 962*x^2 + 4930*x - 5876)/(x^3 + 55*x^2 + 982*x + 5640), (x^6 + 42*x^5 + 478*x^4 + 1419*x^3 + 13026*x^2 - 9172*x + 11648)*y/(x^6 + 39*x^5 - 593*x^4 - 36773*x^3 - 320694*x^2 + 486956*x - 152264))

Note that the result is automatically simplified. You may access to the symbolic expressions composing the result via the method expr():

sage: h.expr()
((x^4 + 55*x^3 + 962*x^2 + 4930*x - 5876)/(x^3 + 55*x^2 + 982*x + 5640),
 (x^6 + 42*x^5 + 478*x^4 + 1419*x^3 + 13026*x^2 - 9172*x + 11648)*y/(x^6 + 39*x^5 - 593*x^4 - 36773*x^3 - 320694*x^2 + 486956*x - 152264))
sage: h.expr()[0]
(x^4 + 55*x^3 + 962*x^2 + 4930*x - 5876)/(x^3 + 55*x^2 + 982*x + 5640)
sage: h.expr()[1]
(x^6 + 42*x^5 + 478*x^4 + 1419*x^3 + 13026*x^2 - 9172*x + 11648)*y/(x^6 + 39*x^5 - 593*x^4 - 36773*x^3 - 320694*x^2 + 486956*x - 152264)
edit flag offensive delete link more
2

answered 2018-10-25 09:35:18 +0100

slelievre gravatar image

One thing is that in mathematics we usually identify a function of two variables and a function of a two-dimensional vector variable. When programming however, these are slightly different.

So if we define:

def f(x, y):
    return vector([(x^2+15*x-2) / (x+15), (x^2*y+x*y+y) / (x^2+30*x-1)])

def g(x, y):
    return vector([(x^2+20*x-18) / (x+20), (x^2*y+x*y+32*y) / (x^2-31*x+14)])

then we can't do f(g(x, y)) and instead have to do f(*g(x, y)) and so we can define:

def fog(x, y):
    return f(*g(x, y))

From there, there are several approaches to computing with rational functions:

  • naive approach using the symbolic ring
  • using polynomial rings and their fraction fields
  • using arithmetic dynamical systems

Naive approach using the symbolic ring

One problem here is that the expressions are not simplified.

sage: x, y = var('x y')
sage: f(x, y)
((x^2 + 15*x - 2)/(x + 15), (x^2*y + x*y + y)/(x^2 + 30*x - 1))
sage: g(x, y)
((x^2 + 20*x - 18)/(x + 20), (x^2*y + x*y + 32*y)/(x^2 - 31*x + 14))
sage: f(*g(x, y))
(((x^2 + 20*x - 18)^2/(x + 20)^2 + 15*(x^2 + 20*x - 18)/(x + 20) - 2)/((x^2 + 20*x - 18)/(x + 20) + 15), ((x^2*y + x*y + 32*y)/(x^2 - 31*x + 14) + (x^2*y + x*y + 32*y)*(x^2 + 20*x - 18)^2/((x^2 - 31*x + 14)*(x + 20)^2) + (x^2*y + x*y + 32*y)*(x^2 + 20*x - 18)/((x^2 - 31*x + 14)*(x + 20)))/((x^2 + 20*x - 18)^2/(x + 20)^2 + 30*(x^2 + 20*x - 18)/(x + 20) - 1))

Using polynomial rings and their fraction fields

This is much better.

sage: R.<x, y> = PolynomialRing(QQ)
sage: S = R.fraction_field()
sage: x, y = S.gens()
sage: f(x, y)
((x^2 + 15*x - 2)/(x + 15), (x^2*y + x*y + y)/(x^2 + 30*x - 1))
sage: g(x, y)
((x^2 + 20*x - 18)/(x + 20), (x^2*y + x*y + 32*y)/(x^2 - 31*x + 14))
sage: f(*g(x, y))
((x^4 + 55*x^3 + 962*x^2 + 4930*x - 5876)/(x^3 + 55*x^2 + 982*x + 5640),
(x^6*y + 42*x^5*y + 478*x^4*y + 1419*x^3*y + 13026*x^2*y - 9172*x*y
+ 11648*y)/(x^6 + 39*x^5 - 593*x^4 - 36773*x^3 - 320694*x^2 + 486956*x
- 152264))

Using arithmetic dynamical systems

This is probably the best approach for studying composition of rational maps.

See the documentation.

edit flag offensive delete link more

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 2018-10-25 05:03:33 +0100

Seen: 852 times

Last updated: Oct 25 '18