alternate function/algorithm for MOD operation

asked 2018-05-06 18:40:39 +0100

santoshi gravatar image

updated 2018-05-06 21:28:22 +0100

tmonteil gravatar image

.

p =37
print"\n p=",p
F=GF(p)
S.<a> = PolynomialRing( F )
K.<a> = GF( p**2);#K.modulus#, modulus=W^2+W+1 )
print "\n Modulus of K is =", K.modulus()                    
R.<z> = PolynomialRing( K, sparse=True )

fE=(4*a + 5)*z^111 + (5*a + 32)*z^75 + 14*z^74 + (32*a + 15)*z^39 + 9*z^38 + (15*a + 22)*z^37 + (33*a + 21)*z^3 + 14*z^2 + (22*a + 8)*z + 12
fL=(5*a + 8)*z^37 + (32*a + 28)*z + 20
F1=(fE % fL).monic()

the time required for the computation of F1 is very large so please suggest me any other alternative for above computation. The gcd function is also required large amount of time for computation . so please suggest me other altrnative or algorithm for computation of one variable polynomial.

enter code here

edit retag flag offensive close merge delete

Comments

I do not see any problem, how slow is your computation (please provide a timing) ?

tmonteil gravatar imagetmonteil ( 2018-05-06 21:30:17 +0100 )edit

the time required for above compution is 1.96ms and i want 0.19 ms.

santoshi gravatar imagesantoshi ( 2018-05-07 10:16:08 +0100 )edit