alternate function/algorithm for MOD operation

asked 7 years ago

santoshi gravatar image

updated 7 years ago

tmonteil gravatar image

.

p =37
print"\n p=",p
F=GF(p)
S.<a> = PolynomialRing( F )
K.<a> = GF( p**2);#K.modulus#, modulus=W^2+W+1 )
print "\n Modulus of K is =", K.modulus()                    
R.<z> = PolynomialRing( K, sparse=True )

fE=(4*a + 5)*z^111 + (5*a + 32)*z^75 + 14*z^74 + (32*a + 15)*z^39 + 9*z^38 + (15*a + 22)*z^37 + (33*a + 21)*z^3 + 14*z^2 + (22*a + 8)*z + 12
fL=(5*a + 8)*z^37 + (32*a + 28)*z + 20
F1=(fE % fL).monic()

the time required for the computation of F1 is very large so please suggest me any other alternative for above computation. The gcd function is also required large amount of time for computation . so please suggest me other altrnative or algorithm for computation of one variable polynomial.

enter code here

Preview: (hide)

Comments

I do not see any problem, how slow is your computation (please provide a timing) ?

tmonteil gravatar imagetmonteil ( 7 years ago )

the time required for above compution is 1.96ms and i want 0.19 ms.

santoshi gravatar imagesantoshi ( 7 years ago )