Ask Your Question
2

How to solve a 5-order equation in sage?

asked 2018-03-09 11:51:52 +0100

extinct gravatar image

updated 2018-03-09 14:46:25 +0100

tmonteil gravatar image

I have tried to solve the following equation:

pp^5 + 4.61469389524440*pp^4 + (-12795.2676889452)*pp^3 + (-22752.9358658338)*pp^2 + 4.19349202517816e7*pp - 8.10593457285525e7

where pp is the independent variable. the command ' solve' don't work.

edit retag flag offensive close merge delete

2 Answers

Sort by ยป oldest newest most voted
2

answered 2018-03-09 15:19:49 +0100

dan_fulea gravatar image

Here is a possibility:

sage: var( 'pp' );
sage: P = pp^5 + 4.61469389524440*pp^4 + (-12795.2676889452)*pp^3 + (-22752.9358658338)*pp^2 + 4.19349202517816e7*pp - 8.10593457285525e7
sage: P.polynomial(CC).roots( multiplicities=0 )
[1.93723191909898,
 -81.8605754469774 - 7.33458961900103*I,
 -81.8605754469774 + 7.33458961900103*I,
 78.5846125398057 - 4.34280791632376*I,
 78.5846125398057 + 4.34280791632376*I]

If precision is an issue, than a "better numerical field" is needed, e.g.

sage: C140 = ComplexField( prec=140 )
sage: C140(pi)
3.1415926535897932384626433832795028841972
sage: P.polynomial(C140).roots( multiplicities=0 )
[1.9372319190989844155691265074104706449442,
 -81.860575446977365410019154805611554643630 - 7.3345896190010263397542664141658440115400*I,
 -81.860575446977365410019154805611554643630 + 7.3345896190010263397542664141658440115400*I,
 78.584612539805673040502993351629825294974 - 4.3428079163237635275011276669093668277717*I,
 78.584612539805673040502993351629825294974 + 4.3428079163237635275011276669093668277717*I]

One can also use other libraries to get the (complex) roots, e.g.

sage: import numpy as np
sage: np.roots( P.coefficients(sparse=0)[::-1] )
array([-81.86057545+7.33458962j, -81.86057545-7.33458962j,
        78.58461254+4.34280792j,  78.58461254-4.34280792j,
         1.93723192+0.j        ])

but this may be interesting only when further working with that package and the collected data, here numpy.

edit flag offensive delete link more
2

answered 2018-03-09 15:18:48 +0100

tmonteil gravatar image

updated 2018-03-09 15:24:53 +0100

You can turn your symbolic expression into a polynomial over a well-defined ring. Given the coefficients, i presume that they are floating-point numbers. Given the precision, the best "field" for that is RDF (if they had more digits of precision, you shoud have a look at RealField or RealBallField).

sage: e = pp^5 + 4.61469389524440*pp^4 - 12795.2676889452*pp^3 - 22752.9358658338*pp^2 + 4.19349202517816e7*pp - 8.10593457285525e7
sage: e.parent()
Symbolic Ring

sage: e.plot(-100,100)
Launched png viewer for Graphics object consisting of 1 graphics primitive

sage: P = e.polynomial(RDF)
sage: P
pp^5 + 4.6146938952444*pp^4 - 12795.2676889452*pp^3 - 22752.9358658338*pp^2 + 41934920.2517816*pp - 81059345.7285525
sage: P.parent()
Univariate Polynomial Ring in pp over Real Double Field

sage: P.roots()
[(1.9372319190989842, 1)]
sage: P.roots(multiplicities=False)
[1.9372319190989842]

sage: e.plot(1,2)

Just in case, if the coefficients could be described as rational or algebraic numbers, i would suggest to use them as coefficients within the correct polynomial ring so that you will get exact solutions.

edit flag offensive delete link more

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

Stats

Asked: 2018-03-09 11:51:52 +0100

Seen: 279 times

Last updated: Mar 09 '18