differential form pullback

Hi All,

I have a differential form defined in 3D Cartesian Coordinates

$\mathit{{\sigma}}=\frac{x\mathit{dy}\mathit{dz}}{a}-\frac{y\mathit{dx}\mathit{dz}}{a}$

and the following map

$g:[{a}{\ast}\cos(\theta), {a}{\ast}\sin(\theta), z]$

How do I calculate the pullback $g^{\ast}(\theta,z)$ of $\sigma$ in SageMath

I've seen all the documentation of pullback in "manifold.pdf" but I am unable to apply those examples to my case.

Thanks.

edit retag close merge delete

Sort by ยป oldest newest most voted

Does the following correspond to what you want?

First we define the 2-form $\sigma$ on the 3-manifold $M$ covered by coordinates $(x,y,z)$:

sage: M = Manifold(3, 'M')
sage: X.<x,y,z> = M.chart()
sage: a = var('a', domain='real')
sage: sigma = M.diff_form(2)
sage: sigma[1,2] = x/a
sage: sigma[0,2] = -y/a
sage: sigma.display()
-y/a dx/\dz + x/a dy/\dz


Then we define the 2-manifold $N$ covered by coordinates $(\theta,z)$ and the map $g: N\to M$:

sage: N = Manifold(2, 'N')
sage: XN.<th,z> = N.chart(r'th:\theta:(0,2*pi) z')
sage: g = N.diff_map(M, [a*cos(th), a*sin(th), z])
sage: g.display()
N --> M
(th, z) |--> (x, y, z) = (a*cos(th), a*sin(th), z)


The pullback of $\sigma$ by $g$ is then

sage: s = g.pullback(sigma)
sage: s
2-form on the 2-dimensional differentiable manifold N
sage: s.display()
a dth/\dz

more

Hi Eric, Yes, this is exactly what I want. Thanks.

( 2018-01-15 18:05:41 -0500 )edit