convert parametric equations to a normal one
I solved my problem into parametric equations as shown below:
x == 3/4*sqrt(2*m^2 + 2)*m/(m^2 + 1), y == 1/4*sqrt(2*m^2 + 2)/(m^2 + 1)
But I meet difficult on how to convert into a normal one, I want to get an equation with x, y
only. For another general description: is there any function will help solve parametric equations into a normal one like solve: x == cos(theta), y == sin(theta)
into x ^ 2 + y ^ 2 == 1
. I learned how to solve it with my pen, but I want a solution with Sage code.
Thanks.
Please give a clear sense to
But I meet difficult on how to convert into a normal one.
What should be converted into a "normal one"? Note that the (non-algebraic!) parametrization works for $$x^2+9y^2 = 9/8$$ and not for $x^2+y^2=1$:
Do we really need the $m$-parametrization for the further question with parameter $\theta$?
Note also that $\theta$ appears in the transcendental functions $x,y$, which live in a domain outside algebra. So the suggested question asks for finding an algebraic relation between non-algebraic objects?
I have edited my question, hope it is clearer now. I mean "normal" to be something like a Conic Curve equation like ellipse is
x^2/a^2 + y^2/b^2 = 1