Ask Your Question
1

ideals of a matrix ring

asked 2016-12-09 18:09:51 +0100

this post is marked as community wiki

This post is a wiki. Anyone with karma >750 is welcome to improve it.

The command

MatrixSpace(R,n,m)

gives all the $n\times m$ matrices over R with a module structure. To construct ideals of matrix rings, I would need something like

MatrixSpace(I,n,m)

where $I$ is an ideal of $R$. But the above command would not work as $I$ is not a ring. Any suggestions what to do? Or more generally, how to construct the set of all matrices with entries from a given set?

edit retag flag offensive close merge delete

1 Answer

Sort by ยป oldest newest most voted
2

answered 2016-12-11 14:28:34 +0100

slelievre gravatar image

updated 2016-12-11 14:29:24 +0100

First, note n by m matrices over a ring form a ring only if n and m are equal.

Example:

sage: MatrixSpace(ZZ, 2, 3) in Rings
False
sage: MatrixSpace(ZZ, 2) in Rings
True

Now in the case of square matrices, one way to answer your question is as follows.

sage: R.<x> = ZZ[]
sage: I = R.ideal([2, x])
sage: M = MatrixSpace(R, 2)
sage: IM_gens = [a * m for a in I.gens() for m in M.gens()]
sage: IM = M.ideal(IM_gens)

This gives us the following.

sage: R
Univariate Polynomial Ring in x over Integer Ring
sage: I
Ideal (2, x) of Univariate Polynomial Ring in x over Integer Ring
sage: M
Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring in x over Integer Ring
sage: IM_gens
[
[2 0]  [0 2]  [0 0]  [0 0]  [x 0]  [0 x]  [0 0]  [0 0]
[0 0], [0 0], [2 0], [0 2], [0 0], [0 0], [x 0], [0 x]
]
sage: IM

Twosided Ideal 
(
  [2 0]
  [0 0],

  [0 2]
  [0 0],

  [0 0]
  [2 0],

  [0 0]
  [0 2],

  [x 0]
  [0 0],

  [0 x]
  [0 0],

  [0 0]
  [x 0],

  [0 0]
  [0 x]
)
 of Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring in x over Integer Ring
edit flag offensive delete link more

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

Stats

Asked: 2016-12-09 18:09:51 +0100

Seen: 393 times

Last updated: Dec 11 '16