Loading [MathJax]/jax/output/HTML-CSS/jax.js
Ask Your Question
1

Constant coefficient of Laurent Polynomials

asked 8 years ago

Ed Cal gravatar image

updated 8 years ago

tmonteil gravatar image

I am looking for the constant coefficient of a Laurent polynomial, the issue I am having is that sage is not simplifying the polynomial.

An example:

a = var(",".join( "a%i" %i for i in range(0, 6)))
f = x*y + 1.00000000000000*a6*x + 1.00000000000000*a4*y + x*y^-1 + x^-1*y + 1.00000000000000*a3*y^-1 + 1.00000000000000*a1*x^-1 + x^-1*y^-1

Then I ask

f/(x^1*y^0)  #  (The powers have to be in this way, just from the context of the work I am doing)

and it outputs:

1.00000000000000/x*x*y + 1.00000000000000*a6/x*x + 1.00000000000000*a4/x*y + 1.00000000000000/x*x*y^-1 + 1.00000000000000/x*x^-1*y + 1.00000000000000*a3/x*y^-1 + 1.00000000000000*a1/x*x^-1 + 1.00000000000000/x*x^-1*y^-1

Now when I ask for the constant coefficient of this LP it tells me its 0 when it is a6.

How can I fix this.

Thanks in advance

Preview: (hide)

2 Answers

Sort by » oldest newest most voted
2

answered 8 years ago

tmonteil gravatar image

updated 8 years ago

First, you are working with symbolic expressions, which is a very fuzzy place. Since your objects are of algebraic nature and Sage is good at it, let us work there.

In your description, there is no difference between x and a6, they are all symbols, at equality. If you agree that the constant coefficient of 3*x+y+1 is 1, then you should agree that the constant coefficient of 3*x+a6+1 is 1, not a6+1.

How to make x and y the undeterminates of your laurent polynomial, and let the ai be part or the coefficients ?

Just define the laurent polynomial ring in x,y on the ring which is the polynomial ring with indeterminates a0,....,a6 over QQ:

sage: R = PolynomialRing(QQ,'a',7); R
Multivariate Polynomial Ring in a0, a1, a2, a3, a4, a5, a6 over Rational Field
sage: R.inject_variables()
Defining a0, a1, a2, a3, a4, a5, a6

sage: L = LaurentPolynomialRing(R,['x','y']) ; L
Multivariate Laurent Polynomial Ring in x, y over Multivariate Polynomial Ring in a0, a1, a2, a3, a4, a5, a6 over Rational Field
sage: L.inject_variables()
Defining x, y

Now, you can do:

sage: f = x*y + a6*x + a4*y + x*y^-1 + x^-1*y + a3*y^-1 + a1*x^-1 + x^-1*y^-1 ; f
x*y + a6*x + a4*y + x*y^-1 + x^-1*y + a3*y^-1 + a1*x^-1 + x^-1*y^-1
sage: f.parent()
Multivariate Laurent Polynomial Ring in x, y over Multivariate Polynomial Ring in a0, a1, a2, a3, a4, a5, a6 over Rational Field

sage: g = f/(x^1*y^0) ; g
y + a6 + a4*x^-1*y + y^-1 + x^-2*y + a3*x^-1*y^-1 + a1*x^-2 + x^-2*y^-1
sage: g.parent()
Multivariate Laurent Polynomial Ring in x, y over Multivariate Polynomial Ring in a0, a1, a2, a3, a4, a5, a6 over Rational Field

sage: g.constant_coefficient()
a6

I used the field of rationals QQ for the base ring of the polynomial ring R, but if you want floating-point numbers (as you wrote 1.00000000000000), you replace it by the real double field RDF.

Preview: (hide)
link

Comments

Thanks, this explains both how to fix and why it was not working which is what I wanted. I thought the fact that a6 was not a variable in my ring was implicit but evidently not. Thanks.

Ed Cal gravatar imageEd Cal ( 8 years ago )
2

answered 8 years ago

castor gravatar image

You may try the following:

a = var(",".join( "a%i" %i for i in range(0, 7)))
R.<x,y> = LaurentPolynomialRing(SR,2)
f = x*y + a6*x + a4*y + x*y^-1 + x^-1*y + a3*y^-1 + a1*x^-1 + x^-1*y^-1
(f/(x^1*y^0)).constant_coefficient()

It gives a6 as you expect and e.g.

 (f/(x^0*y^1)).constant_coefficient()

is equal to a4. Also you can determine the coefficient of any monomial:

(f/(x^0*y^1)).coefficient(x^-1*y^-2)

is 1.

Preview: (hide)
link

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

Stats

Asked: 8 years ago

Seen: 845 times

Last updated: Nov 27 '16