Finding a γ to define a number field like E=Q(ζ5)(X5−γ)
By working with eliptic curves, I found that the extension E defined by:
E.<a> = NumberField(x^20 - 2*x^19 - 2*x^18 + 18*x^17 - 32*x^16 + 88*x^15 + 58*x^14 -
782*x^13 + 1538*x^12 + 1348*x^11 - 466*x^10 - 894*x^9 + 346*x^8 -
114*x^7 - 424*x^6 - 88*x^5 + 214*x^4 + 54*x^3 + 14*x^2 + 4*x + 1)
Is a cyclic Kummer extension of degree 5 over Q(ζ5), thus by the clasification of Kummer extensions, there exists γ∈Q(ζ5) such that E=Q(5√γ).
So, about all the polynomials f that define E how do I find γ such that the polynomial X5−γ also defines E?