Ask Your Question
1

polynomial equation

asked 2016-01-13 16:00:32 +0100

Iman Bhamani gravatar image

updated 2016-01-13 17:46:23 +0100

vdelecroix gravatar image

How can I solve it by sage?

Sage: solve(-6-4*y-x-(1+y)*x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2)==0, (2*(4+2*y+x))*(1+y)-(1+y)*x+2+x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2)-(2+y)*(-(1+y)*x+2+x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2))==0, x,y)
edit retag flag offensive close merge delete

2 Answers

Sort by ยป oldest newest most voted
1

answered 2016-01-14 11:36:28 +0100

B r u n o gravatar image

It is not clear in your question on which field or ring you want to solve your equation. Though the following sequence of computations seems to indicate that your system is verified by any value for x and y:

sage: var('x,y')
(x, y)
sage: p = -6-4*y-x-(1+y)*x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2)
sage: q = (2*(4+2*y+x))*(1+y)-(1+y)*x+2+x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2)-(2+y)*(-(1+y)*x+2+x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2))
sage: s = solve(p==0,x,y); s
([x == -(4*y - sqrt((x^2 + 8*x + 16)*y^2 + 4*x^2 + 4*(x^2 + 7*x + 12)*y + 24*x + 36) + 6)/(y + 2)],
 [1])
sage: x0 = s[0][0].rhs()
sage: q.subs(x=x0)
-((4*y - sqrt((x^2 + 8*x + 16)*y^2 + 4*x^2 + 4*(x^2 + 7*x + 12)*y + 24*x + 36) + 6)*(y + 1)/(y + 2) + sqrt(-4*(2*y - (4*y - sqrt((x^2 + 8*x + 16)*y^2 + 4*x^2 + 4*(x^2 + 7*x + 12)*y + 24*x + 36) + 6)/(y + 2) + 4)*(y + 1)*((4*y - sqrt((x^2 + 8*x + 16)*y^2 + 4*x^2 + 4*(x^2 + 7*x + 12)*y + 24*x + 36) + 6)/(y + 2) - 2) + ((4*y - sqrt((x^2 + 8*x + 16)*y^2 + 4*x^2 + 4*(x^2 + 7*x + 12)*y + 24*x + 36) + 6)*(y + 1)/(y + 2) - (4*y - sqrt((x^2 + 8*x + 16)*y^2 + 4*x^2 + 4*(x^2 + 7*x + 12)*y + 24*x + 36) + 6)/(y + 2) + 2)^2) - (4*y - sqrt((x^2 + 8*x + 16)*y^2 + 4*x^2 + 4*(x^2 + 7*x + 12)*y + 24*x + 36) + 6)/(y + 2) + 2)*(y + 2) + 2*(2*y - (4*y - sqrt((x^2 + 8*x + 16)*y^2 + 4*x^2 + 4*(x^2 + 7*x + 12)*y + 24*x + 36) + 6)/(y + 2) + 4)*(y + 1) + (4*y - sqrt((x^2 + 8*x + 16)*y^2 + 4*x^2 + 4*(x^2 + 7*x + 12)*y + 24*x + 36) + 6)*(y + 1)/(y + 2) + sqrt(-4*(2*y - (4*y - sqrt((x^2 + 8*x + 16)*y^2 + 4*x^2 + 4*(x^2 + 7*x + 12)*y + 24*x + 36) + 6)/(y + 2) + 4)*(y + 1)*((4*y - sqrt((x^2 + 8*x + 16)*y^2 + 4*x^2 + 4*(x^2 + 7*x + 12)*y + 24*x + 36) + 6)/(y + 2) - 2) + ((4*y - sqrt((x^2 + 8*x + 16)*y^2 + 4*x^2 + 4*(x^2 + 7*x + 12)*y + 24*x + 36) + 6)*(y + 1)/(y + 2) - (4*y - sqrt((x^2 + 8*x + 16)*y^2 + 4 ...
(more)
edit flag offensive delete link more
1

answered 2016-01-14 11:43:02 +0100

ndomes gravatar image
var('x y')
eq1 = -6-4*y-x-(1+y)*x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2)==0
eq2 = (2*(4+2*y+x))*(1+y)-(1+y)*x+2+x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2)-(2+y)*(-(1+y)*x+2+x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2))==0
show(eq1)
eq11 = eq1 + 6 +x*(y+1) + x + 4*y
eq12 =(eq11^2).expand()
show(eq12)
eq13 = eq12 - eq12.lhs()
show(eq13)
print '------------'
show(eq2)
eq21 = eq2.simplify_full()
show(eq21)
eq22 = eq21 - 6 -2*x -(x+4)*y^2 -(3*x+10)*y
show(eq22)
eq23 = (eq22^2).expand()
show(eq23)
eq24 = eq23 - eq23.lhs()
show(eq24)
edit flag offensive delete link more

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 2016-01-13 16:00:32 +0100

Seen: 660 times

Last updated: Jan 14 '16