Multiplicities of solutions not showing up correctly
I am trying to find the roots of the following
f = -54.0*I*x**27 + (-202.5 - 584.567147554496*I)*x**15 + (1.62379763209582 + 2.0625*I)*x**3
using the command
sols, mults = solve(f ,x, multiplicities=True)
but the answer I get is wrong, because there should be 27 roots, of which x=0.0 should have multiplicity 3 and all the other should have multiplicity 1. This is what I get instead:
([x == 1/4*2^(3/4)*(sqrt(3)*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12) + I*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12)), x == 1/4*2^(3/4)*(I*sqrt(3)*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12) + (-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12)), x == 1/2*I*2^(3/4)*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12), x == 1/4*2^(3/4)*(I*sqrt(3)*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12) - (-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12)), x == -1/4*2^(3/4)*(sqrt(3)*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12) - I*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12)), x == -1/2*2^(3/4)*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12), x == -1/4*2^(3/4)*(sqrt(3)*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12) + I*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12)), x == 1/4*2^(3/4)*(-I*sqrt(3)*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12) - (-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12)), x == -1/2*I*2^(3/4)*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12), x == 1/4*2^(3/4)*(-I*sqrt(3)*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12) + (-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12)), x == 1/4*2^(3/4)*(sqrt(3)*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12) - I*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12)), x == 1/2*2^(3/4)*(-1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12), x == 1/4*2^(3/4)*(sqrt(3)*(1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12) + I*(1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12)), x == 1/4*2^(3/4)*(I*sqrt(3)*(1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I - 189750626/4382103)^(1/12) + (1/30773305171191*I*sqrt(1232006789381660639610346922212*I - 1564858793284486386236895596057) + 15*I ...