# Numerical approximations

```
g(x)=x^2-sqrt(2)
solve(g(x)==0,x)
[x == -2^(1/4), x == 2^(1/4)]
```

What's the best/quickest way to get numerical approximations of these values of x? Thanks.

Numerical approximations

```
g(x)=x^2-sqrt(2)
solve(g(x)==0,x)
[x == -2^(1/4), x == 2^(1/4)]
```

What's the best/quickest way to get numerical approximations of these values of x? Thanks.

add a comment

0

0

In your case, since `g`

can be seen as a polynomial, you can also look at its roots in the real double field (floating-point approximations with 53 bits of precision):

```
sage: g.polynomial(RDF).roots()
[(-1.189207115002721, 1), (1.189207115002721, 1)]
```

0

Try taking the right hand side of each solution.

```
sage: A = solve(g(x)==0,x)
sage: [a.rhs().n() for a in A]
[-1.18920711500272, 1.18920711500272]
```

where `n()`

is short for `numerical_approx()`

. There are other ways of approaching this as well, such as via the `solution_dict=True`

keyword to `solve()`

.

Asked: **
2015-06-03 18:33:02 -0500
**

Seen: **113 times**

Last updated: **Jun 05 '15**

unable to numerically solve an equation (basic question)

obtain explicit solutions from "solve"

cannot evaluate symbolic expression numerically

Solve for r in (x-x1)^2 + (y-y1)^2 == (r+r1)^2 ?

Solving a simple system of equations

Errors when plotting zeta function parametrically

Missing solution in homogeneous equation

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.