# Numerical approximations

```
g(x)=x^2-sqrt(2)
solve(g(x)==0,x)
[x == -2^(1/4), x == 2^(1/4)]
```

What's the best/quickest way to get numerical approximations of these values of x? Thanks.

Numerical approximations

```
g(x)=x^2-sqrt(2)
solve(g(x)==0,x)
[x == -2^(1/4), x == 2^(1/4)]
```

What's the best/quickest way to get numerical approximations of these values of x? Thanks.

add a comment

0

0

In your case, since `g`

can be seen as a polynomial, you can also look at its roots in the real double field (floating-point approximations with 53 bits of precision):

```
sage: g.polynomial(RDF).roots()
[(-1.189207115002721, 1), (1.189207115002721, 1)]
```

0

Try taking the right hand side of each solution.

```
sage: A = solve(g(x)==0,x)
sage: [a.rhs().n() for a in A]
[-1.18920711500272, 1.18920711500272]
```

where `n()`

is short for `numerical_approx()`

. There are other ways of approaching this as well, such as via the `solution_dict=True`

keyword to `solve()`

.

Asked: **
2015-06-03 18:33:02 -0500
**

Seen: **101 times**

Last updated: **Jun 05 '15**

unable to numerically solve an equation (basic question)

Use `solve`output to create a function

Not understandable error when solving polynomial equation

solve an equation in terms of an expression?

Using numerical solution from system of equations

Solving system of polynomial inequalities in SageMath 8.1

Numerical approximation of symbolic equation

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.