# Numerical approximations

```
g(x)=x^2-sqrt(2)
solve(g(x)==0,x)
[x == -2^(1/4), x == 2^(1/4)]
```

What's the best/quickest way to get numerical approximations of these values of x? Thanks.

Numerical approximations

```
g(x)=x^2-sqrt(2)
solve(g(x)==0,x)
[x == -2^(1/4), x == 2^(1/4)]
```

What's the best/quickest way to get numerical approximations of these values of x? Thanks.

add a comment

0

0

In your case, since `g`

can be seen as a polynomial, you can also look at its roots in the real double field (floating-point approximations with 53 bits of precision):

```
sage: g.polynomial(RDF).roots()
[(-1.189207115002721, 1), (1.189207115002721, 1)]
```

0

Try taking the right hand side of each solution.

```
sage: A = solve(g(x)==0,x)
sage: [a.rhs().n() for a in A]
[-1.18920711500272, 1.18920711500272]
```

where `n()`

is short for `numerical_approx()`

. There are other ways of approaching this as well, such as via the `solution_dict=True`

keyword to `solve()`

.

Asked: **
2015-06-03 18:33:02 -0500
**

Seen: **149 times**

Last updated: **Jun 05 '15**

Getting all (complex) solutions of a non polynomial equation

Display x-intercept of a plot, involving x raised to the 3rd power.

Method for solving a large system of under-determined equations?

solving equations and using values obtained in other calculations

Trouble finding intersection of two functions

Errors when plotting zeta function parametrically

Not understandable error when solving polynomial equation

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.