# Computations in a Quotient Ring

I'm trying to do some computations in a quotient ring in Sage, and I'm having some trouble. For example:

Working with the ring:

```
R.<x,y,z,w,u,z1,z2,z3,z4,z5> = PolynomialRing(QQ,10)
S.<a,b,c,d,e,m1,m2,m3,m4,m5> = R.quo((x^2,y^2+x*y, z^2+x*z + y*z, w^2 - w*x+w*y, u^2 + u*x+ u*z + u*w))
```

I want to compute `(a*(m3+m4+m5) + b*(m1+m2+m3+m4) + c*(m1+m3) + d*(m1+m2) + e*m1)^5`

where I'm thinking about `m1`

, `m2`

, `m3`

, `m4`

, and `m5`

as arbitrary coefficients. When I type this in it returns

```
4/19*e^5*m1^5 + 15/19*e^5*m1^4*m2 + 10/19*e^5*m1^3*m2^2 +
10/19*e^5*m1^4*m3 + 40/19*e^5*m1^3*m2*m3 + 15/19*e^5*m1^2*m2^2*m3 -
15/19*e^5*m1*m2^2*m3^2 - 5/19*e^5*m1^2*m3^3 - 10/19*e^5*m1*m2*m3^3 +
5/19*e^5*m1^4*m4 - 15/19*e^5*m1^2*m2^2*m4 - 30/19*e^5*m1*m2^2*m3*m4 -
15/19*e^5*m1^2*m3^2*m4 - 30/19*e^5*m1*m2*m3^2*m4 - 10/19*e^5*m1^3*m4^2 -
15/19*e^5*m1^2*m2*m4^2 - 15/19*e^5*m1^2*m3*m4^2 -
30/19*e^5*m1*m2*m3*m4^2 - 5/19*e^5*m1^4*m5 - 20/19*e^5*m1^3*m2*m5 -
15/19*e^5*m1^2*m2^2*m5 - 20/19*e^5*m1^3*m3*m5 - 60/19*e^5*m1^2*m2*m3*m5
- 30/19*e^5*m1*m2^2*m3*m5 - 15/19*e^5*m1^2*m3^2*m5 -
30/19*e^5*m1*m2*m3^2*m5 - 20/19*e^5*m1^3*m4*m5 - 30/19*e^5*m1^2*m2*m4*m5
- 30/19*e^5*m1^2*m3*m4*m5 - 60/19*e^5*m1*m2*m3*m4*m5
```

However, this is also equivalent to `(some expression of mi's)*a*b*c*d*e`

.

I want it in this form, because for the problem I'm working on I need this coefficient in front of `a*b*c*d*e`

. But I'm not sure how to ask Sage to convert it to this form? For example, "solve" doesn't seem to work in a quotient ring.

(I'm sorry if this is a silly question. I'm new to Sage!)

To display lines of code, either indend them four spaces, or select them and click the "code" button (the one with "010 101"). To display fragments of code in a text paragraph, use backticks.