sage cannot get the simplest form on the limit expression with binomial and exponential operations

asked 2014-12-14 05:52:34 -0600

Mr.GanCheng gravatar image

updated 2014-12-15 04:33:30 -0600

tmonteil gravatar image

considering the flowing code:

————————————————————————

from sage.symbolic.assumptions import GenericDeclaration;

var('lamda,n,k,p');

decl1 = GenericDeclaration(k, 'integer');

decl1.assume();

assume(k>0,k>1,n>k,lamda>0,lamda<n);

ep=binomial(n,k)*p^k*(1-p)^(n-k);

ep=ep.subs_expr(p==lamda/n);

ep=ep.subs_expr(binomial(n,k)==factorial(n)/factorial(k)/factorial(n-k));

ep=limit(ep,n=oo);

ep.simplify_full();

————————————————————————

the result is:

lamda^k*limit((-(lamda - n)/n)^n*factorial(n)/((-lamda + n)^k*factorial(-k + n)), n, +Infinity)/factorial(k)

————————————————————————

it is not the simplest form. In fact , sage will give me the simplest form as below when I paste the result above to sage again.

————————————————————————

lamda^k*e^(-lamda)/factorial(k)

  ————————————————————————

the question is how can i get the simplest form directly?

edit retag flag offensive close merge delete

Comments

Probably an analog problem to http://trac.sagemath.org/ticket/15346 where it affects sum expressions.

rws gravatar imagerws ( 2014-12-14 08:21:03 -0600 )edit