# sage cannot get the simplest form on the limit expression with binomial and exponential operations

considering the flowing code:

————————————————————————

```
from sage.symbolic.assumptions import GenericDeclaration;
var('lamda,n,k,p');
decl1 = GenericDeclaration(k, 'integer');
decl1.assume();
assume(k>0,k>1,n>k,lamda>0,lamda<n);
ep=binomial(n,k)*p^k*(1-p)^(n-k);
ep=ep.subs_expr(p==lamda/n);
ep=ep.subs_expr(binomial(n,k)==factorial(n)/factorial(k)/factorial(n-k));
ep=limit(ep,n=oo);
ep.simplify_full();
```

————————————————————————

the result is:

```
lamda^k*limit((-(lamda - n)/n)^n*factorial(n)/((-lamda + n)^k*factorial(-k + n)), n, +Infinity)/factorial(k)
```

————————————————————————

it is not the simplest form. In fact , sage will give me the simplest form as below when I paste the result above to sage again.

————————————————————————

```
lamda^k*e^(-lamda)/factorial(k)
```

————————————————————————

the question is how can i get the simplest form directly?

Probably an analog problem to http://trac.sagemath.org/ticket/15346 where it affects sum expressions.