Loading [MathJax]/jax/output/HTML-CSS/jax.js
Ask Your Question
2

Solving system of linear Diophantine equations

asked 10 years ago

arunayyar gravatar image

updated 10 years ago

slelievre gravatar image

I have an m×n integer matrix A with m>n, and a set SZ, for example S={1,0,1}.

I want to enumerate all possible XSn such that AX=0.

I tried using smith_form(), but then i could not figure out how to force the solution to belong to elements of S.


EDIT. Thank you Dima for the solution. It works well. I am adding an example here to illustrate your solution.

lb = -1
ub = 1
A = matrix(ZZ, [(8,2,10,0,12,2,0), (4,6,9,1,14,5,2), (2,0,1,1,0,1,0), (2,1,3,0,4,0,1)])
eq1 = [(0,8,2,10,0,12,2,0), (0,4,6,9,1,14,5,2), (0,2,0,1,1,0,1,0), (0,2,1,3,0,4,0,1)]
ieq1 = [(-lb,1,0,0,0,0,0,0), (ub,-1,0,0,0,0,0,0),
         (-lb,0,1,0,0,0,0,0), (ub,0,-1,0,0,0,0,0),
         (-lb,0,0,1,0,0,0,0), (ub,0,0,-1,0,0,0,0),
         (-lb,0,0,0,1,0,0,0), (ub,0,0,0,-1,0,0,0),
         (-lb,0,0,0,0,1,0,0), (ub,0,0,0,0,-1,0,0),
         (-lb,0,0,0,0,0,1,0), (ub,0,0,0,0,0,-1,0),
         (-lb,0,0,0,0,0,0,1), (ub,0,0,0,0,0,0,-1)]
p = Polyhedron(eqns=eq1, ieqs=ieq1, base_ring=QQ)
p.integral_points()

returns the answer

((-1, -1, 1, 1, 0, 0, 0),
 (0, -1, -1, 1, 1, 0, 0),
 (0, -1, 0, -1, 0, 1,1), 
 (0, 0, 0, 0, 0, 0, 0),
 (0, 1, 0, 1, 0, -1, -1),
 (0, 1, 1, -1, -1, 0,0),
 (1, 1, -1, -1, 0, 0, 0))

which is exactly what i needed. Thanks again.

Preview: (hide)

1 Answer

Sort by » oldest newest most voted
3

answered 10 years ago

You can enumerate integer points in a polytope using Sage. Create the polytope P using A and inequalities specifying S, i.e. 1xi1 for all i. (look up docs on Polyhedron). Then call P.integral_points()

Preview: (hide)
link

Your Answer

Please start posting anonymously - your entry will be published after you log in or create a new account.

Add Answer

Question Tools

1 follower

Stats

Asked: 10 years ago

Seen: 2,722 times

Last updated: Aug 03 '14