Compute the volume of a cube region
Hi,
I would like to compute the volume V of the lower polyhedron (that does not contain vertex A) let's call it polyG. (let's call polyA the upper polyhedron that does not contain G). Size is a=AB=BF=...
We can compute VpolyA by introducing K and I points and using Pythagore's theorem and median's properties . I can do that by hand using VpolyG=Vcube−VpolyA
I want to compute the volume with sage, I have tried this code using volume integrations but I am not sure about the result at all... I look at first for the normal vector of plane DBE (cross product) which gives the equation plane x−y+z. Then I compute using triple integrations.
x=var('x')
y=var('y')
z=var('z')
a=var('a')
u=vector([a,a,0])
v=vector([0,a,a])
print u.cross_product(v)
intz = integrate(1,z,0,a-y-x)
inty = integrate(intz,y,0,a-x)
intx = integrate(inty,x,0,a)
print intx
I would like to know if there are elegant ways of computing this kind of problem in sage ? And in addition, if this require few lines, how can I display the above figure ? Sorry if this looks simple, I am new to Sage.
Thanks,