# Find minimum value of polynomial

I have a univariate polynomial with integer coefficients over [0,1] and I would like to find a minimum value. Is there an easy way to do that in sage?

Find minimum value of polynomial

add a comment

2

Try the following:

```
f(x)=(x-3)*(x+2)^2
f.find_minimum_on_interval(0,1)
```

You have to remember that: f.find_minimum_on_interval(0,1) does NOT include the end points. This call on f(x) = (x-3)*(x+2)^2 will produce these results: (-17.99999991390072, 0.99999997130024143) While over the interval [0,1] the minimum is located at x=1 If you want to include the endpoints you would need to write something like this: min(f(0), f.find_minimum_on_interval(0,1)[0], f(1))

I found this answer before finding

https://ask.sagemath.org/question/412...

The answer given at this link notes the updated method name "find_local_minimum/maximum"

See also: Sage Reference Manual on numerical optimization.

I also discovered this name change after following examples in Craig Finch's "Sage Beginner's Guide"

Please start posting anonymously - your entry will be published after you log in or create a new account.

Asked: ** 2013-07-29 14:20:42 +0200 **

Seen: **1,115 times**

Last updated: **Jul 29 '13**

Model of polynomial with integer coefficients

Multivariate Polynomials over Rational Function Fields

How do I Pass a tuple as an argument for a multivariate polynomial?

Is there an example of how i could write a polynomial as a product of linear factors

multi-symmetric functions and multi-partitions

polynomials rings over transcendental field extensions

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.