# basis of hyperplane

Hallo

I am new to sage and have this problem.

Given a hyperplane $H_u \subset GF(2^{n+1})$ define by $x |-> a^8 +a$

How do I determine the basis of $H_u$ over $GF(2)$?

Regards

basis of hyperplane

Hallo

I am new to sage and have this problem.

Given a hyperplane $H_u \subset GF(2^{n+1})$ define by $x |-> a^8 +a$

How do I determine the basis of $H_u$ over $GF(2)$?

Regards

add a comment

1

I do not understand how the constant map $x\mapsto a^8+a$ defines a hyperplane, but if you want to find a basis of the orthogonal hyperplane of the vector $a^8+a$, where $a$ is "the" generator of $K = GF(2^{n+1})$ viewed as a vector space over $F = GF(2)$, you can:

```
sage: n = 6
sage: K = GF(2^(n+1),'a') ; K
Finite Field in a of size 2^7
sage: a = K.gen()
sage: F = K.base() ; F
Finite Field of size 2
sage: V = K.vector_space() ; V
Vector space of dimension 7 over Finite Field of size 2
sage: v = V(a^8 + a) ; v
(0, 0, 1, 0, 0, 0, 0)
sage: m = matrix(v) ; m
[0 0 1 0 0 0 0]
sage: m.right_kernel().basis()
[
(1, 0, 0, 0, 0, 0, 0),
(0, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0),
(0, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 0, 1)
]
```

@tmonteil, thanx the map was suppose to be $x\mapsto x\cdot a^8 + x^8 \cdot a$. By adding the code f = lambda x: x * a^8 + a * x^8 S = V.subspace([f(x) for x in K]) S.basis() I got a solution. What will the most effective method to create a map (isomorphism) from $S$ to $GF(2^n)$?

Asked: **
2013-07-20 09:40:54 -0500
**

Seen: **690 times**

Last updated: **Jul 20 '13**

Newbie question: introducing symbols (variables) inside vectors and matrices

Plotting the effects of a linear transformation on a grid

Changing basis on a vector space

How does one detect cyclic vectors in SAGE?

Finding the matrix of a linear affine transformation and its inverse

How to stop Sage from finding erroneous complex roots?

converting linear map to matrix representation

solution to homogeneous system of linear equations with coefficients over field $\mathbb{F}_2$

Copyright Sage, 2010. Some rights reserved under creative commons license. Content on this site is licensed under a Creative Commons Attribution Share Alike 3.0 license.