ASKSAGE: Sage Q&A Forum - RSS feedhttps://ask.sagemath.org/questions/Q&A Forum for SageenCopyright Sage, 2010. Some rights reserved under creative commons license.Sun, 03 Nov 2013 14:22:42 +0100[style] Choose between multiple inheritancehttps://ask.sagemath.org/question/10692/style-choose-between-multiple-inheritance/Dear Sage people,
I want to create a new (mathematical) object that sometimes is an Expression and sometimes a SymbolicFunction, depending on the arguments. You can think of this for example like $f(a, b, t) = \int_0^t a^b e^{-x^2} dx$. For special values of $t$ I would like to see it as an Expression ($t=0$ or $t=\infty$), but in all other cases I want it to be a BuiltinFunction (or something alike).
In Sage I can do something like:
class MyObjectExpression(Expression):
def __init__(self, a, b, t):
Expression.__init__(self, integral(a**b*e**(-x**2), x, 0, t))
# More (override) stuff below
class MyObjectFunction(BuiltinFunction):
def __init__(self, a, b, t):
BuiltinFunction.__init__(self, 'f(a,b,t)', nargs=1)
# More (override) stuff below
def MyObject(a, b, t):
if t == 0 or t == infty:
return MyObjectExpression(a, b, t)
else:
return MyObjectFunction(a, b, t)
Is it possible to combine these three things into one class? So I want to create a class which is sometimes an Expression and sometimes an much more abstract class, is this possible?
Best,
Noud
**Edit:**
What I actually want to do is programming Askey-Wilson polynomials and give them extra options, like a three term recurrence relation. But this depends on $n$. I already programmed this.
class Askey_Wilson(SageObject):
def __init__(self, SR, n, z, a, b, c, d, q):
self.n = n
self.z = z
self.q = q
self.a = a
self.b = b
self.c = c
self.d = d
self.param = [a, b, c, d]
if self.n in ZZ:
self.I = self.evaluate()
else:
self.I = var('askey_wilson')
def __repr__(self):
return 'p_%i(%s;%s,%s,%s,%s|%s)' % (
self.n, self.z, self.a, self.b, self.c, self.d, self.q
)
def evaluate(self):
n, q, z, a, b, c, d = [self.n, self.q, self.z] + self.param
lc = qPochhammerSymbol(SR, [a*b, a*c, a*d], q, n) / a**n
poly = BasicHypergeometricSeries(SR,
[q**(-n), a*b*c*d*q**(n-1), a*z, a*z**(-1)],
[a*b, a*c, a*d], q, q)
return lc*poly
def three_term_recurrence(self):
A, B, C = 0, 0, 0
# compute three term recurrence relation
return A, B, C
But now every time I want to know the explicit value of the Askey-Wilson polynomials I have to call askey_wilson.I. I want to get rid of the I.NoudSun, 03 Nov 2013 14:22:42 +0100https://ask.sagemath.org/question/10692/