ASKSAGE: Sage Q&A Forum - RSS feedhttps://ask.sagemath.org/questions/Q&A Forum for SageenCopyright Sage, 2010. Some rights reserved under creative commons license.Mon, 07 Nov 2016 16:50:42 +0100Is there any way to find decomposition group and ramification groupshttps://ask.sagemath.org/question/35472/is-there-any-way-to-find-decomposition-group-and-ramification-groups/Let $L/K$ be a Galois extension of number fields with Galois group $G$. Let $O_K$ and $O_L$ be the ring of algebraic integers of $K$ and $L$ respectively. Let $P\subseteq O_K$ be a prime. Let $Q\subseteq O_L$ be a prime lying over $P$.
The decomposition group is defined as $$D(Q|P)=\lbrace \sigma\in G\text{ }|\text{ }\sigma(Q)=Q\rbrace$$
The $n$-th ramification group is defined as $$E_n(Q|P)=\lbrace \sigma\in G:\sigma(a)\equiv a\text{ mod } Q^{n+1}\text{ for all } a\in O_L\rbrace$$
I want to compute the decomposition group and ramification groups of the cyclotomic field $\mathbb{Q}(\zeta)$ over $\mathbb{Q}$ where $\zeta$ is a root of unity.
How to do this ? Any idea ?nebuckandazzerMon, 07 Nov 2016 16:50:42 +0100https://ask.sagemath.org/question/35472/