ASKSAGE: Sage Q&A Forum - Latest question feedhttp://ask.sagemath.org/questions/Q&A Forum for SageenCopyright Sage, 2010. Some rights reserved under creative commons license.Sun, 30 Dec 2018 12:11:11 -0600Finding the kernel of a matrix in a non-integral domainhttp://ask.sagemath.org/question/44815/finding-the-kernel-of-a-matrix-in-a-non-integral-domain/I have been trying to find the kernel of the matrix in a quotient, for example.
If we have the following quotient ring in sage:
R.<t> = PolynomialRing(GF(3),'t')
I = R.ideal([t^3])
S = R.quotient_ring(I);
and if I try to find the kernel of the matrix:
E = Matrix(S, ([[0+a*t+b*t^2, 1+a*t+b*t^2, 0+a*t+b*t^2, 0+a*t+b*t^2],
[0+a*t+b*t^2, 0+a*t+b*t^2, 0+a*t+b*t^2, 0+a*t+b*t^2],
[0+a*t+b*t^2, 0+a*t+b*t^2, 0+a*t+b*t^2, 1+a*t+b*t^2],
[0+a*t+b*t^2, 0+a*t+b*t^2, 0+a*t+b*t^2,0+a*t+b*t^2]]))
E.kernel()
It gives me the following error: NotImplementedError.
I guess this is because F3[x]/(x^3) is not an integral domain but I would like a way around it.
Thanks in advance.abelSun, 30 Dec 2018 12:11:11 -0600http://ask.sagemath.org/question/44815/Finding the kernel of a non-integral domainhttp://ask.sagemath.org/question/44814/finding-the-kernel-of-a-non-integral-domain/I have been trying to find the kernel of the matrix in a quotient, for example.
If we have the following quotient ring in sage:
R.<t> = PolynomialRing(GF(3),'t')
I = R.ideal([t^3])
S = R.quotient_ring(I);
and if I try to find the kernel of the matrix:
E = Matrix(S, ([[0+a*t+b*t^2, 1+a*t+b*t^2, 0+a*t+b*t^2, 0+a*t+b*t^2],
[0+a*t+b*t^2, 0+a*t+b*t^2, 0+a*t+b*t^2, 0+a*t+b*t^2],
[0+a*t+b*t^2, 0+a*t+b*t^2, 0+a*t+b*t^2, 1+a*t+b*t^2],
[0+a*t+b*t^2, 0+a*t+b*t^2, 0+a*t+b*t^2,0+a*t+b*t^2]]))
E.kernel()
It gives me the following error: NotImplementedError.
I guess this is because F3[x]/(x^3) is not an integral domain but I would like a way around it.
Thanks in advance. abelSun, 30 Dec 2018 12:09:21 -0600http://ask.sagemath.org/question/44814/