ASKSAGE: Sage Q&A Forum - RSS feedhttps://ask.sagemath.org/questions/Q&A Forum for SageenCopyright Sage, 2010. Some rights reserved under creative commons license.Thu, 22 Nov 2012 01:52:30 +0100Quotienting a ring of integershttps://ask.sagemath.org/question/9556/quotienting-a-ring-of-integers/I was trying to play within the ring of integers of a number field, when I decided to quotient by an ideal. It raised an "IndexError: the number of names must equal the number of generators" exception, which was quite unexpected ; here is an example:
K=NumberField(x**2+1,x)
O=K.ring_of_integers()
O.quo(O.ideal(3))
as you see, I'm using the same ring to define the ideal I want to quotient with, so there is mathematically no problem... so I think either I found a bug or something needs to be documented better. How does one work in a quotient of a ring of integers?SnarkThu, 22 Nov 2012 01:52:30 +0100https://ask.sagemath.org/question/9556/