ASKSAGE: Sage Q&A Forum - RSS feedhttps://ask.sagemath.org/questions/Q&A Forum for SageenCopyright Sage, 2010. Some rights reserved under creative commons license.Thu, 24 May 2018 15:52:10 +0200Correct way to construct a field with i adjoined?https://ask.sagemath.org/question/42420/correct-way-to-construct-a-field-with-i-adjoined/Hello,
I'm an undergrad maths student looking to understand how I successfully adjoin elements to a finite field in sagemath, to explore some of my university topics.
I can construct a base field, for example:
B = GF(2**3-1)
and I can construct an extension to this by adjoining I, which is equivalent to using the minimum polynomial x^2+1 like so:
reset('i') # make sure we haven't clobbered the imaginary constant
E = B[i]
This does what I want (I think), creating a field E that is an extension of B. We can even list the elements:
[e for e in enumerate(E)]
and this looks correct. However, things get messy when I try to use a larger field, for example:
C = GF(2**127-1)
F = C[i]
This gives the error:
> I already exists with incompatible valence
I haven't tried to redefine i at all, so far as I can tell, so, my questions are:
1. How do I correctly extend a given finite field ?
2. Following on from this, I tried the following:
A = GF(2**3-1)
B = A[i]
C = A.extension(x^2+1, 'i')
B==C
So it appears I can't successfully adjoin 'i' using a minimum irr poly either. Printing B and C give:
sage: B
Finite Field in I of size 7^2
sage: C
Finite Field in i of size 7^2
which would explain why they aren't equal... except i and I should be equal.
In short, I would like to construct the quotient field PRIME BASE FIELD[x]/x^2-1 and have the arbitrary x treated as complex values ("adjoining sqrt(-1)") but I'm unclear from sage's documentation on how to achieve this.
3. I see the notation
R.<x> = GF(blah)
quite a lot. Can someone please explain it? I can't find anything in the documentation that might help me understand what this is and why it is necessary.
You can assume I understand most of an undergraduate galois theory course and have a basic understanding of algebraic number theory - what I don't understand is how this maps into sage.zahllosThu, 24 May 2018 15:52:10 +0200https://ask.sagemath.org/question/42420/