ASKSAGE: Sage Q&A Forum - RSS feedhttps://ask.sagemath.org/questions/Q&A Forum for SageenCopyright Sage, 2010. Some rights reserved under creative commons license.Sun, 31 Dec 2017 17:56:35 +0100Is K = QQ[polynomial_root] the same as K.<a> = QQ.extension(polynomial)?https://ask.sagemath.org/question/40400/is-k-qqpolynomial_root-the-same-as-ka-qqextensionpolynomial/I have tested it in a few cases and it seems to be the same, however the following piece of code shows they are not equal :
sage: f
x^3 + 2*x + 5
sage: f.roots(QQbar)
[(-1.328268855668609?, 1),
(0.664134427834305? - 1.822971095411114?*I, 1),
(0.664134427834305? + 1.822971095411114?*I, 1)]
sage: alpha = f.roots(QQbar, multiplicities=False)[0]
sage: K = QQ[alpha]
sage: K
Number Field in a with defining polynomial x^3 + 2*x + 5
sage: H.<a> = QQ.extension(f)
sage: H
Number Field in a with defining polynomial x^3 + 2*x + 5
sage: K['x'](f).factor()
(x - a) * (x^2 + a*x + a^2 + 2)
sage: H['x'](f).factor()
(x - a) * (x^2 + a*x + a^2 + 2)
sage: H == K
False
sage: H.gen() == K.gen()
False
sage: type(K)
<class 'sage.rings.number_field.number_field.NumberField_absolute_with_category'>
sage: type(H)
<class 'sage.rings.number_field.number_field.NumberField_absolute_with_category'>
sage: H.categories() == K.categories()
True
Moreover, I would like to suggest adding this special use of brackets ( such as QQ[polynomial_root] ) to the official doc as long as it is missing.Daniel JimenezSun, 31 Dec 2017 17:56:35 +0100https://ask.sagemath.org/question/40400/