ASKSAGE: Sage Q&A Forum - RSS feedhttps://ask.sagemath.org/questions/Q&A Forum for SageenCopyright Sage, 2010. Some rights reserved under creative commons license.Mon, 29 Jun 2020 16:55:09 +0200Solving a polynomial system in a quotient ringhttps://ask.sagemath.org/question/52254/solving-a-polynomial-system-in-a-quotient-ring/I want to compute all solutions in $\mathbb{Z}_9[\sqrt2,x]$, where $x$ is such that $(x+\sqrt2)^2=2(x+\sqrt2)$, of the equation
$$X^2=1.$$
I'm first defining the polynomial ring over $\mathbb{Z}_9$ in variables $x,y$, then factoring by the ideal generated by
$$y^2-2, (x+y)^2-2(x+y),$$
to get the ring $S$, but then I don't know which command to use in order to get the solutions of $X^2-1$. I have tried "solve" and "variety" (defining $S[X]$ first and then the ideal of $X^2-1$), but they do not seem to work. The code up to this point is just
R.<x,y> = PolynomialRing(IntegerModRing(9),order='lex')
J= R.ideal(x^2-2,(x+y)^2-2*(x+y))
S=R.quotient(J)
Which function should I use?Jose BroxMon, 29 Jun 2020 16:55:09 +0200https://ask.sagemath.org/question/52254/