ASKSAGE: Sage Q&A Forum - Latest question feedhttps://ask.sagemath.org/questions/Q&A Forum for SageenCopyright Sage, 2010. Some rights reserved under creative commons license.Sat, 13 Jan 2018 04:32:29 -0600Eigenvalues of hecke operatorshttps://ask.sagemath.org/question/40588/eigenvalues-of-hecke-operators/For a project I am trying to build a program that computes a basis for cusp forms of weight 2 over $\Gamma_0(N)$. At one point, I want to represent eigenvalues of multiple Hecke operators. For example, (for $N=23$) I have found the following matrices for the Hecke operators:
$
T_2=\begin{pmatrix} -2 & -1/2 ;
2 & 1 \end{pmatrix}, T_3=\begin{pmatrix} 3 & 1 ;
-4 & -3 \end{pmatrix} \quad T_5=\begin{pmatrix} -2 & -1/2 ;
2 & 1 \end{pmatrix} \quad
$
so we have the following characteristic polynomials $f_2=x^2+x-1$, $f_3=x^2-5$, $f_5=x^2 +2x-4$. Suppose we denote the solution of $f_2$ (eigenvalues of $T_2$) by $a$ and it's conjugate. Then we can denote the solution of $f_3$ by $2a+1$ and of $f_5$ by $2a$.
I am trying to figure out how I can 'make' Sage represent these eigenvalues in this way. Say I have found these matrices above, I can create k.< a >=NumberField(x^2+x-1), then $a$ represents the root of the polynomial. So the question for me is, how can I make Sage give me the eigenvalues of $T_3$ and $T_5$ in terms of $a$?
Furthermore, I am wondering how to get the jordan normal form of $T_2$, or eigenmatrix in terms of $a$. If I ask for jordan_form, I get an error, and if I ask for eigenmatrix_right, I only get a numerical expression.
Remark: A little context, the goal for this project is to represent newforms in a similar way as Sage does, when you ask for example Newforms(23,2,names='a'). We need the eigenvalues of the hecke operators since they correspond with the coefficients of the Fourier series.
----------TheBeiramSat, 13 Jan 2018 04:32:29 -0600https://ask.sagemath.org/question/40588/