ASKSAGE: Sage Q&A Forum - RSS feedhttps://ask.sagemath.org/questions/Q&A Forum for SageenCopyright Sage, 2010. Some rights reserved under creative commons license.Thu, 11 Apr 2019 09:56:49 +0200Setting t=0 in a non-symmetric E-Macdonald polynomialhttps://ask.sagemath.org/question/46090/setting-t0-in-a-non-symmetric-e-macdonald-polynomial/ Suppose I have a non-symmetric [E-Macdonald polynomial](https://arxiv.org/abs/math/0601693) indexed by, say, $\mu=(0,1,1)$. Then I can write
from sage.combinat.sf.ns_macdonald import E
E([0,1,1])
and I get a polynomial in three variables and with coefficients in $\mathbb{Q}(q,t)$:
((-t + 1)/(-q*t + 1))*x0*x1 + ((-t + 1)/(-q*t + 1))*x0*x2 + x1*x2
However, I am confused about how I can work with this polynomial. For my purposes, I would like to study the specialization $t=0$. It would be really neat if there were some way to get write something like
Epoly(x_0,x_1,x_2,q,t) =...
so I could easily specialize variables as I go along.
joakim_uhlinThu, 11 Apr 2019 09:56:49 +0200https://ask.sagemath.org/question/46090/