ASKSAGE: Sage Q&A Forum - Latest question feedhttp://ask.sagemath.org/questions/Q&A Forum for SageenCopyright Sage, 2010. Some rights reserved under creative commons license.Thu, 01 Aug 2019 07:38:44 -0500central idempotent of a finite dimensional algebrahttp://ask.sagemath.org/question/47338/central-idempotent-of-a-finite-dimensional-algebra/I tried the following
A=Algebras(QQ).FiniteDimensional().WithBasis().Semisimple().Commutative()
B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0],
[0,0,0,1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0], [0,0,0,0,0,1,0,0,0], [0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,1]]), Matrix([[0,1,0,0,0,0,0,0,0], [0,0,1,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0], [0,0,0,0,1,0,0,0,0], [0,0,0,0,0,1,0,0,0], [0,0,0,1,0,0,0,0,0], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0]]), Matrix([[0,0,1,0,0,0,0,0,0], [1,0,0,0,0,0,0,0,0], [0,1,0,0,0,0,0,0,0], [0,0,0,0,0,1,0,0,0], [0,0,0,1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0]]), Matrix([[0,0,0,1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0], [0,0,0,0,0,1,0,0,0], [0,1,0,0,0,0,1,0,0], [0,0,1,0,0,0,0,1,0], [1,0,0,0,0,0,0,0,1], [2,0,0,0,2,0,0,0,0], [0,2,0,0,0,2,0,0,0], [0,0,2,2,0,0,0,0,0]]), Matrix([[0,0,0,0,1,0,0,0,0], [0,0,0,0,0,1,0,0,0], [0,0,0,1,0,0,0,0,0], [0,0,1,0,0,0,0,1,0], [1,0,0,0,0,0,0,0,1], [0,1,0,0,0,0,1,0,0], [0,2,0,0,0,2,0,1,0], [0,0,2,2,0,0,0,1,0], [2,0,0,0,2,0,0,0,0]]), Matrix([[0,0,0,0,0,1,0,0,0], [0,0,0,1,0,0,0,0,0], [0,0,0,0,1,0,0,0,0], [1,0,0,0,0,0,0,0,1], [0,1,0,0,0,0,1,0,0], [0,0,1,0,0,0,0,1,0], [0,0,2,2,0,0,0,0,0], [2,0,0,0,2,0,0,0,0], [0,2,0,0,0,2,0,0,0]]), Matrix([[0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,1], [2,0,0,0,2,0,0,0,0], [0,2,0,0,0,2,0,0,0], [0,0,2,2,0,0,0,0,0], [0,0,2,2,0,0,0,1,0], [2,0,0,0,2,0,0,0,1], [0,2,0,0,0,2,1,0,0]]), Matrix([[0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,0,0], [0,2,0,0,0,2,0,0,0], [0,0,2,2,0,0,0,0,0], [2,0,0,0,2,0,0,0,0], [2,0,0,0,2,0,0,0,1], [0,2,0,0,0,2,1,0,0], [0,0,2,2,0,0,0,1,0]]), Matrix([[0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,1,0], [0,0,2,2,0,0,0,0,0], [2,0,0,0,2,0,0,0,0], [0,2,0,0,0,2,0,0,0], [0,2,0,0,0,2,1,0,0], [0,0,2,2,0,0,0,1,0], [2,0,0,0,2,0,0,0,1]])], category=A)
B.central_orthogonal_idempotents()
The above code gives me error. Could anyone tell me how to fix the code?`enter code here`REKHA BISWALThu, 01 Aug 2019 07:38:44 -0500http://ask.sagemath.org/question/47338/Compute radical and idempotents of a quotient algebrahttp://ask.sagemath.org/question/10350/compute-radical-and-idempotents-of-a-quotient-algebra/I tried the following:
R.<x,y>=PolynomialRing(QQ,2)
I=Ideal(x^2,y^2)
S=R.quotient(I)
I have the following question:
> I would like to compute with SAGE the Jacobson radical of the algebra S, all primitive orthogonal idempotents and the central idempotents.
Of course, you can compute this by hand, but I am interested in more complicated examples, too (also in matrix algebras), but wanted to start with this simple example.
Since I am relatively new to Sage, I unfortunately do not know how to compute this.
I would be grateful for any help.
BernFri, 12 Jul 2013 03:50:17 -0500http://ask.sagemath.org/question/10350/