ASKSAGE: Sage Q&A Forum - RSS feedhttps://ask.sagemath.org/questions/Q&A Forum for SageenCopyright Sage, 2010. Some rights reserved under creative commons license.Tue, 16 Oct 2012 09:36:20 +0200Hurwitz determinantshttps://ask.sagemath.org/question/9433/hurwitz-determinants/Dear all,
let p(z)=z^n+a_1*z^{n-1}+...+a_n be a polynomial where n is a positive integer and a_1,a_2,..., a_n are real numbers. Then the so-called **Hurwitz determinants** of order k=1,2,...,n of p are defined as det(a_{2i-j}) , 1 \leq i,j \leq k where a_0=1 and a_l=0 for l<0 or l>k.
Is there a routine implemented in Sage to compute these determinants (numerically)?
Thanks a lot in advance.HacksteinTue, 16 Oct 2012 09:36:20 +0200https://ask.sagemath.org/question/9433/Using numerical solution from system of equationshttps://ask.sagemath.org/question/7948/using-numerical-solution-from-system-of-equations/I want to take the numerical solution of a variable in a system of equations and use it later in the program. But all I can get is the symbolic definition. Here's a simplified example of the problem.
sage: var('x y z')
sage: eq1 = x + y + z == 6
sage: eq2 = 2*x - y + 2*z == 6
sage: eq3 = 3*x + 3*y - z == 6
sage: solve([eq1, eq2, eq3], x, y, z)
sage: v = x
sage: print v
Output:
[
[x == 1, y == 2, z == 3]
]
x
I assume the syntax for solving the system is correct because I get the right answers but I want v = 1, not v = x.
Thanks.
RACWed, 16 Feb 2011 13:35:22 +0100https://ask.sagemath.org/question/7948/