ASKSAGE: Sage Q&A Forum - Latest question feedhttp://ask.sagemath.org/questions/Q&A Forum for SageenCopyright Sage, 2010. Some rights reserved under creative commons license.Fri, 07 Nov 2014 01:27:28 -0600how to list a Spec of Zmod all elenments?http://ask.sagemath.org/question/24805/how-to-list-a-spec-of-zmod-all-elenments/
A = Spec(Zmod(5));A;A[0];AA= Spec(Zmod(15));AA;AA[1]
cjshFri, 07 Nov 2014 01:27:28 -0600http://ask.sagemath.org/question/24805/how to list a scheme all elements?http://ask.sagemath.org/question/24543/how-to-list-a-scheme-all-elements/ A = AffineSpace(2, GF(3,2))
show(A);
A.rational_points()
show(A.coordinate_ring())
show(A.base_scheme())
A.base_scheme().list()
I want list A.base_scheme Spectrum all elementscjshTue, 21 Oct 2014 05:23:16 -0500http://ask.sagemath.org/question/24543/Prime ideals and "Point on Spectrum"http://ask.sagemath.org/question/8003/prime-ideals-and-point-on-spectrum/The spectrum of the ring of integers $\mathbb{Z}$ consists of the prime ideals, i.e. $Spec(\mathbb{Z}) = \cup_{p \space prime}p\mathbb{Z} \cup (0)$.
i1: S = Spec(ZZ)
i2: nZ = ZZ.ideal(6)
i3: S(nZ)
o3: Point on Spectrum of Integer Ring defined by the Principal ideal (6) of Integer Ring
i4: nZ.is_prime()
o4: False
Obviously, nZ is not a prime ideal, as 6 is composite. Hence by definition, it is not in $Spec(\mathbb{Z})$. So what does "Point on Spectrum" means exactly in Sage?
ThanksWeaamTue, 15 Mar 2011 10:13:32 -0500http://ask.sagemath.org/question/8003/