ASKSAGE: Sage Q&A Forum - RSS feedhttps://ask.sagemath.org/questions/Q&A Forum for SageenCopyright Sage, 2010. Some rights reserved under creative commons license.Thu, 07 Feb 2013 19:13:35 +0100Multivariate Taylor Serieshttps://ask.sagemath.org/question/9783/multivariate-taylor-series/Hi. I know `f.taylor(x, x_0, n)` would generate an n-order Taylor approximation of f around x_0 for a function of a single variable. How can I do this for multiple variables? I know Maxima can handle it. How do I do this in sage?Thu, 07 Feb 2013 18:13:48 +0100https://ask.sagemath.org/question/9783/multivariate-taylor-series/Answer by calc314 for <p>Hi. I know <code>f.taylor(x, x_0, n)</code> would generate an n-order Taylor approximation of f around x_0 for a function of a single variable. How can I do this for multiple variables? I know Maxima can handle it. How do I do this in sage?</p>
https://ask.sagemath.org/question/9783/multivariate-taylor-series/?answer=14516#post-id-14516You can do the following:
f(x,y)=sin(x)*y
taylor(f(x,y),(x,pi),(y,2),4)
or
f.taylor((x,pi),(y,2),4)Thu, 07 Feb 2013 19:02:52 +0100https://ask.sagemath.org/question/9783/multivariate-taylor-series/?answer=14516#post-id-14516Comment by yktula for <p>You can do the following:</p>
<pre><code>f(x,y)=sin(x)*y
taylor(f(x,y),(x,pi),(y,2),4)
</code></pre>
<p>or</p>
<pre><code>f.taylor((x,pi),(y,2),4)
</code></pre>
https://ask.sagemath.org/question/9783/multivariate-taylor-series/?comment=18279#post-id-18279I'm not sure what mistake I was making; it seems so obvious. Thank you so much!Thu, 07 Feb 2013 19:13:35 +0100https://ask.sagemath.org/question/9783/multivariate-taylor-series/?comment=18279#post-id-18279